Homotopy Type Theory Cauchy structure > history (Rev #11, changes)

Showing changes from revision #10 to #11: Added | Removed | Changed

Definition

Let A R A R be a dense integral subdomain of the dense rational numbers Archimedean ordered abelian group\mathbb{Q} with and a let point1R +:A 1:A R_{+} and be a the term positive terms of ζ R:0<1 \zeta: R 0 \lt 1. Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA with respect to 00.

A An A R + A_{+} R_{+}-Cauchy structure is a A R + A_{+} R_{+}-premetric space SS with

  • a function inj: A RS inj: A R \to S

  • a function lim:C(S, A R +)S lim: C(S, A_{+}) R_{+}) \to S, where C(S, A R +) C(S, A_{+}) R_{+}) is the type of A R + A_{+} R_{+}-Cauchy approximations in SS

  • dependent families of terms

a:S,b:Seq(a,b): ϵ: A R +(a ϵb)(a= Sb) a:S, b:S \vdash eq(a, b): \Vert \prod_{\epsilon:A_{+}} \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \to (a =_S b)
a: A R,b: A R,ϵ: A R +μ A R, A R(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b)) a:A, a:R, b:A, b:R, \epsilon:A_{+} \epsilon:R_{+} \vdash \mu_{A, \mu_{R, A}(a, R}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
a: A R,b:C S(R +),ϵ: A R +,η: A R +μ A R,C(S, A R +)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b)) a:A, a:R, b:C_{S}(R_{+}), \epsilon:A_{+}, \epsilon:R_{+}, \eta:A_{+} \eta:R_{+} \vdash \mu_{A, \mu_{R, C(S, A_{+})}(a, R_{+})}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
a:C(S, A R +),b: A R,δ: A R +,ϵ: A R +μ C(S, A R +), A R(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b)) a:C(S, A_{+}), R_{+}), b:A, b:R, \delta:A_{+}, \delta:R_{+}, \epsilon:A_{+} \epsilon:R_{+} \vdash \mu_{C(S, A_{+}), R_{+}), A}(a, R}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
a:C(S, A R +),b:C(S, A R +),δ: A R +,ϵ: A R +,η:R +μ C(S, A R +),C(S, A R +)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b)) a:C(S, A_{+}), R_{+}), b:C(S, A_{+}), R_{+}), \delta:A_{+}, \delta:R_{+}, \epsilon:A_{+}, \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{C(S, A_{+}), R_{+}), C(S, A_{+})}(a, R_{+})}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two A R + A_{+} R_{+}-Cauchy structures SS and TT, a A R + A_{+} R_{+}-Cauchy structure homomorphism consists of

  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ: A R +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b)) a:S, b:S, \epsilon:A_{+} \epsilon:R_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r: A Rι(r):f(inj S(r))=inj T(r) r:A r:R \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S, A R +)λ(r):f(lim S(r))=lim T(fr) r:C(S, A_{+}) R_{+}) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ: A R +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c)) a:S, b:S, c:\Vert \prod_{\epsilon:A_{+}} \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))

See also

References

  • Auke B. Booij, Analysis in univalent type theory (pdf)

Revision on March 31, 2022 at 02:43:40 by Anonymous?. See the history of this page for a list of all contributions to it.