Homotopy Type Theory modulated Cauchy real numbers > history (Rev #9, changes)

Redirected from "downward totality".

Showing changes from revision #8 to #9: Added | Removed | Changed

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

Let \mathbb{Q} be the rational numbers \mathbb{Q} and let

+{x|0<x}\mathbb{Q}_{+} \coloneqq \{x \in \mathbb{Q} \vert 0 \lt x\}

be the positive rational numbers.

The Let us define aCauchy real numbersCauchy algebra to be a C\mathbb{R}_C is a set with a function ι A C C() \iota A \in {\mathbb{R}_C}^{C(\mathbb{Q})} , where with a function C ι (A C()) C(\mathbb{Q}) \iota \in A^{C(\mathbb{Q})} , is where the set ofC()C(\mathbb{Q}) is the set of Cauchy approximations in \mathbb{Q} and CA C() {\mathbb{R}_C}^{C(\mathbb{Q})} A^{C(\mathbb{Q})} is the set of functions with domain C()C(\mathbb{Q}) and codomain CA \mathbb{R}_C A, such that

aC().bC().(ϵ +.|a ϵ ϵb ϵ|<4ϵ)(ι(a)=ι(b)) \forall a \in C(\mathbb{Q}). \forall b \in C(\mathbb{Q}). \left( \forall \epsilon \in \mathbb{Q}_{+}. \vert a_\epsilon \sim_{\epsilon} - b_\epsilon \vert \lt 4 \epsilon \right) \implies (\iota(a) = \iota(b))

where A thepremetricCauchy algebra homomorphism for is a function ϵ f: +B A \epsilon:\mathbb{Q}_{+} f:B^A is between defined Cauchy as algebrasAA and BB such that

a ϵ b C (|a ϵ) .b ϵf | (<ι A4( ϵ a))=ι B(a) \forall a \sim_{\epsilon} \in b C(\mathbb{Q}). \coloneqq f(\iota_A(a)) \vert = a_\epsilon \iota_B(a) - b_\epsilon \vert \lt 4 \epsilon

The category of Cauchy algebras is the category CauchyAlgCauchyAlg whose objects Ob(CauchyAlg)Ob(CauchyAlg) are Cauchy algebras and whose morphisms Mor(CauchyAlg)Mor(CauchyAlg) are Cauchy algebra homomorphisms. The set of Cauchy real numbers, denoted C\mathbb{R}_C, is defined as the initial object in the category of Cauchy algebras.

In homotopy type theory

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers.

The Cauchy real numbers C\mathbb{R}_C are inductively generated by the following:

  • a function ι:C() C\iota: C(\mathbb{Q}) \to \mathbb{R}_C, where C()C(\mathbb{Q}) is the type of Cauchy approximations in \mathbb{Q}.

  • a dependent family of terms

    a:C(),b:C()eq C(a,b):( ϵ: +|a ϵ ϵb ϵ|<4ϵ)(ι(a)= Cι(b)) a:C(\mathbb{Q}), b:C(\mathbb{Q}) \vdash eq_{\mathbb{R}_C}(a, b): \left( \prod_{\epsilon:\mathbb{Q}_{+}} \vert a_\epsilon \sim_{\epsilon} - b_\epsilon \vert \lt 4 \epsilon \right) \to (\iota(a) =_{\mathbb{R}_C} \iota(b))

    where the premetric for ϵ: +\epsilon:\mathbb{Q}_{+} is defined as

    a ϵb|a ϵb ϵ|<4ϵa \sim_{\epsilon} b \coloneqq \vert a_\epsilon - b_\epsilon \vert \lt 4 \epsilon
  • a family of dependent terms

    a: C,b: Cτ(a,b):isProp(a= Cb)a:\mathbb{R}_C, b:\mathbb{R}_C \vdash \tau(a, b): isProp(a =_{\mathbb{R}_C} b)

Comment

The Cauchy real numbers are sometimes defined using sequences x:x:\mathbb{N} \to \mathbb{Q}, y:y:\mathbb{N} \to \mathbb{Q} with modulus of Cauchy convergence M: +M:\mathbb{Q}_{+} \to \mathbb{N}, N: +N:\mathbb{Q}_{+} \to \mathbb{N} respectively. However, the composition of a sequence and a modulus of Cauchy convergence yields a Cauchy approximation, so one could define Cauchy approximations a: +a:\mathbb{Q}_{+} \to \mathbb{Q} as axMa \coloneqq x \circ M and b: +b:\mathbb{Q}_{+} \to \mathbb{Q} as byNb \coloneqq y \circ N, with x M(ϵ)=a ϵx_{M(\epsilon)} = a_\epsilon and y N(ϵ)=b ϵy_{N(\epsilon)} = b_\epsilon following from function evaluation. In fact, Cauchy approximations and sequences with a modulus of Cauchy convergence are inter-definable.

See also

References

Revision on April 14, 2022 at 15:23:22 by Anonymous?. See the history of this page for a list of all contributions to it.