On univalent categories in homotopy type theory:
Benedikt Ahrens, Chris Kapulkin, Michael Shulman, Univalent categories and the Rezk completion, Mathematical Structures in Computer Science 25 5 (From type theory and homotopy theory to Univalent Foundations of Mathematics), (2015) 1010-1039 [arXiv:1303.0584, doi:10.1007/978-3-319-21284-5_14]
Benedikt Ahrens, Univalent categories and Rezk completion, talk at IRIT (2013) [pdf]
On the UniMath project:
Benedikt Ahrens, Paige Randall North, Niels van der Weide, Semantics for two-dimensional type theory, LICS ‘22: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, August 2022, No. 12, Pages 1–14, (doi:10.1145/3531130.3533334)
Benedikt Ahrens, Paige Randall North, Michael Shulman, Dimitris Tsementzis, The Univalence Principle (arXiv:2102.06275)
On univalence in homotopy type theory:
On univalent bicategories in homotopy type theory:
On monoidal univalent categories:
Last revised on March 12, 2024 at 04:11:47. See the history of this page for a list of all contributions to it.