On number theory and quadratic forms:
The article after which the Gauss law in electromagnetism is named:
Carl F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum, methodo nova tractata, Commentationes Societatis Regiae Scientiarum Göttingensis Recentiores. Comm. Class. Math. 2 (1813) 1–24 [PPN35283028X_0002_2NS]
reprinted in: Carl Friedrich Gauss – Werke 5, Springer (1877) 2-22 [doi:10.1007/978-3-642-49319-5_1]
On the fundamental theorem of algebra:
Carl Gauss, Demonstratio nova theorematis functionem algebraicam rationalem integramunius variabilis in factores reales primi vel secundi gradus resolvi posse, Dissertation, Helmstedt (1799); Werke 3, 1–30 (1866) (English transl. pdf))
Carl Gauss, Demonstratio nova altera theorematis omnem functionem algebraicamrationalem integram unius variabilis in factores reales primi vel secundi gradus resolviposse, Comm. Soc. Reg. Sci. Göttingen 3, 107–142 (1816); Werke 3, 33–56 (1866)
Another new proof of the theorem that every integral rational algebraic function of one variable can be resolved into real factors of the first or second degree translated by Paul Taylor and B. Leak (1983) (web)
Last revised on December 21, 2023 at 11:10:04. See the history of this page for a list of all contributions to it.