symmetric monoidal (∞,1)-category of spectra
A property of Noetherian local commutative rings to be Cohen-Macaulay is a weak version of a smoothness condition.
A local commutative ring is Cohen-Macaulay iff it is a Cohen-Macaulay module as a module on itself.
A variety is Cohen-Macaulay if for all points the corresponding local ring is Cohen-Macauley, that is, its Krull dimension is equal to its depth.
Every regular local ring is Cohen-Macauley and, more generally, every complete intersection ring is Cohen-Macauley.
Last revised on June 22, 2024 at 09:08:34. See the history of this page for a list of all contributions to it.