nLab
Dedekind cut structure
Contents
Contents
Definition
Given a set T T with a dense linear order < \lt , a pair of subsets ( L , R ) (L, R) of T T with injections i L : L → T i_L:L \to T and i R : R → T i_R:R \to T is a Dedekind cut structure if it comes equipped with the following structure
an element l ∈ L l \in L
an element r ∈ R r \in R
for every element a ∈ L a \in L and b ∈ T b \in T , a function c d ( a , b ) : ] b , a [ → { c ∈ L | i L ( c ) = b } c_d(a, b):]b, a[ \to \{c \in L \vert i_L(c) = b\}
for every element a ∈ R a \in R and b ∈ T b \in T , a functionc u ( a , b ) : ] a , b [ → { c ∈ R | i R ( c ) = b } c_u(a, b):]a, b[ \to \{c \in R \vert i_R(c) = b\}
for every element a ∈ L a \in L , an elemento d ( a ) ∈ { b ∈ L | i L ( a ) < i L ( b ) } o_d(a) \in \{b \in L \vert i_L(a) \lt i_L(b)\}
for every element a ∈ R a \in R , an elemento u ( a ) ∈ { b ∈ R | i R ( b ) < i R ( a ) } o_u(a) \in \{b \in R \vert i_R(b) \lt i_R(a)\}
for every element a ∈ L a \in L and b ∈ R b \in R , an elementt ( a , b ) ∈ ] i L ( a ) , i R ( b ) [ t(a, b) \in ]i_L(a), i_R(b)[
for every element a ∈ T a \in T and b ∈ T b \in T , a functionL ( a , b ) : ] a , b [ → ( { c ∈ L | i L ( c ) = a } ⊎ { c ∈ R | i R ( c ) = b } ) L(a, b):]a,b[ \to (\{c \in L \vert i_L(c) = a\} \uplus \{c \in R \vert i_R(c) = b\})
where ] a , b [ ]a, b[ is the open interval bounded by a a from below and by b b from above.
See also
References
Last revised on June 10, 2022 at 14:58:11.
See the history of this page for a list of all contributions to it.