Dietmar Salamon is a German mathematician at ETH, Zurich (earlier at University of Warwick), where he retired as prof. emeritus in 2018. His main directions of research include dynamical systems and symplectic and contact geometry and topology.
Dusa McDuff, D.A. Salamon, J-holomorphic curves and symplectic topology, AMS Colloquium Publications 52, 2004.
Dusa McDuff, Dietmar Salamon, Introduction to symplectic topology, 2 ed. Oxford Mathematical Monographs 1998. x+486 pp.
Dusa McDuff, Dietmar Salamon, J-holomorphic curves and quantum cohomology, AMS, University Lecture Series 6, 1994.; revised pdf
Joel W. Robbin, D. Salamon, Maslov index for paths, Topology 32 (1993), no. 4, 827–844, doi90052-W), pdf, MR94i:58071
Joel Robbin, Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33 pdf
Joel W. Robbin, Dietmar A. Salamon, A construction of the Deligne–Mumford orbifold, J. Eur. Math. Society, ISSN1435-9855, Vol. 8, Nº 4, 2006, 611–699, arXiv:math/0407090 MR2009d:32012, Corrigendum, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 901–905, doi
Joel W. Robbin, Dietmar A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 153–183, doi, MR93h:58091
Joel W. Robbin, Dietmar A. Salamon, Dynamical systems, Shape Theory and the Conley index, Ergodic Theory Dynam. Systems 8 (1988) 375–393
Joel W. Robbin, Yongbin Ruan, Dietmar A. Salamon, The moduli space of regular stable maps, Math. Z. 259 (2008), no. 3, 525–574, doi, MR2010a:58014
Joel W. Robbin, Dietmar A. Salamon, Feynman path integrals and the metaplectic representation, Math. Z. 221 (1996), no. 2, 307–335, MR98f:58051, doi
Joel W. Robbin, Dietmar A. Salamon, Phase functions and path integrals, Symplectic geometry (Proc., ed. D. Salamon), 203–226, London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press 1993, RobbinSalamonPhaseFunctionsPathIntegrals.djvu.
Last revised on March 16, 2023 at 11:02:57. See the history of this page for a list of all contributions to it.