nLab Dietmar Salamon

Selected writings

Dietmar Salamon is a German mathematician at ETH, Zurich (earlier at University of Warwick), where he retired as prof. emeritus in 2018. His main directions of research include dynamical systems and symplectic and contact geometry and topology.

Selected writings

  • Dusa McDuff, D.A. Salamon, J-holomorphic curves and symplectic topology, AMS Colloquium Publications 52, 2004.

  • Dusa McDuff, Dietmar Salamon, Introduction to symplectic topology, 2 ed. Oxford Mathematical Monographs 1998. x+486 pp.

  • Dusa McDuff, Dietmar Salamon, J-holomorphic curves and quantum cohomology, AMS, University Lecture Series 6, 1994.; revised pdf

  • Joel W. Robbin, D. Salamon, Maslov index for paths, Topology 32 (1993), no. 4, 827–844, doi90052-W), pdf, MR94i:58071

  • Joel Robbin, Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33 pdf

  • Joel W. Robbin, Dietmar A. Salamon, A construction of the Deligne–Mumford orbifold, J. Eur. Math. Society, ISSN1435-9855, Vol. 8, Nº 4, 2006, 611–699, arXiv:math/0407090 MR2009d:32012, Corrigendum, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 901–905, doi

  • Joel W. Robbin, Dietmar A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 153–183, doi, MR93h:58091

  • Joel W. Robbin, Dietmar A. Salamon, Dynamical systems, Shape Theory and the Conley index, Ergodic Theory Dynam. Systems 8 (1988) 375–393

  • Joel W. Robbin, Yongbin Ruan, Dietmar A. Salamon, The moduli space of regular stable maps, Math. Z. 259 (2008), no. 3, 525–574, doi, MR2010a:58014

  • Joel W. Robbin, Dietmar A. Salamon, Feynman path integrals and the metaplectic representation, Math. Z. 221 (1996), no. 2, 307–335, MR98f:58051, doi

  • Joel W. Robbin, Dietmar A. Salamon, Phase functions and path integrals, Symplectic geometry (Proc., ed. D. Salamon), 203–226, London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press 1993, RobbinSalamonPhaseFunctionsPathIntegrals.djvu.

On complex Lie groups:

On compact Lie groups:

category: people

Last revised on March 16, 2023 at 11:02:57. See the history of this page for a list of all contributions to it.