nLab Hasse-Schmidt derivation

Contents

Contents

Idea

The notion of Hasse-Schmidt derivation, or higher deriviation is an extension of the notion of derivation.

Definition

Let RR be a commutative rig and SS a RR-module. A Hasse-Schmidt derivation is a family of linear maps (D n:SS) n0(D^{n}:S \rightarrow S)_{n \ge 0} such that:

  • D 0=IdD^{0} = Id
  • D n(ab)=0knD k(a)D nk(b)D^{n}(ab) = \underset{0 \le k \le n}{\sum}D^{k}(a)D^{n-k}(b)

Note that D 1D^{1} is then a derivation in the usual sense.

References

The notion is explicitely defined in:

  • Morris Weifeld: Purely Inseparable Extensions and Higher Derivations, Transactions of the American Mathematical Society, 116 (1965) 435-449 pdf

where it is said that it is due to the paper:

  • Helmut Hasse: Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. (Nach einer brieflichen Mitteilung von F. K. Schmidt in Jena.), Reine Angew. Math. 177 (1937) 215-223 [paper]

which defines the Hasse-Schmidt derivative.

Created on August 13, 2022 at 20:28:32. See the history of this page for a list of all contributions to it.