**John Williford Duskin** (1937-2020) was a category theorist from the North American School of Category Theory in the Buffalo group. He is often refered to as **Jack Duskin**.

On the Beck monadicity theorem:

- Jack Duskin,
*Variations on Beck’s tripleability criterion*, in:*Reports of the Midwest Category Seminar III*, Lecture Notes in Mathematics**106**, Springer (1969) [doi:10.1007/BFb0059143]

- John Duskin,
*Simplicial methods and the interpretation of “triple” cohomology“*Memoirs of the AMS**163**, Amer. Math. Soc. (1975) [ISBN:978-1-4704-0645-5]

- John Duskin,
*Simplicial matrices and the nerves of weak $n$-categories I: nerves of bicategories*, Theory and Applications of Categories**9**10 (2002) 198–308 [tac:9-10]

On ordinary cohomology in toposes (abelian sheaf cohomology), higher gerbes and introducing the notion of hypergroupoids:

- John Duskin,
*Higher-dimensional torsors and the cohomology of topoi: the abelian theory*, p. 255-279 in:*Applications of sheaves*, Lecture Notes in Mathematics**753**, Springer (1979) [doi:10.1007/BFb0061822]

On descent theory:

- John Duskin,
*An outline of a theory of higher dimensional descent*, Bull. de la Soc. Math. de Belgique**41**(1989) 249-277

On Azumaya complexes?:

- John W. Duskin,
*The Azumaya complex of a commutative ring*, in:*Categorical algebra and its applications*, Lecture Notes in Math.**1348**, Springer (1988) 107-117 [doi:10.1007/BFb0081352]

On cat-n-groups:

- Manuel Bullejos, Antonio M. Cegarra, John W. Duskin,
*On cat$^n$ -groups and homotopy types*, J. PureAppl. Alg.

**86**(1993) 135-154 [doi:10.1016/0022-4049(93)90099-F]

On non-abelian cohomology in a topos:

- John W. Duskin,
*Non-abelian cohomology in a topos*, Reprints in Theory and Applications of Categories**23**(2013) 1-165 [tac:tr23, pdf]

category: people

Last revised on June 21, 2024 at 10:03:10. See the history of this page for a list of all contributions to it.