On compactly generated topological spaces:

- Gaunce Lewis,
*Compactly generated spaces*(pdf), appendix A of*The Stable Category and Generalized Thom Spectra*PhD thesis Chicago, 1978

On stabilization and simplicial topological spaces:

- L. Gaunce Lewis, Jr.,
*When is the natural map $X \to \Omega \Sigma X$ a cofibration?*, Trans. Amer. Math. Soc. 273 (1982), 147–155.

On equivariant stable homotopy theory:

- L. Gaunce Lewis, Peter May, Mark Steinberger (with contributions by J.E. McClure),
*Equivariant stable homotopy theory*, Springer Lecture Notes in Mathematics**1213**(1986) [pdf, doi:10.1007/BFb0075778]

On Eilenberg-MacLane objects and Seifert-van Kampen theorem in equivariant homotopy theory:

- L. Gaunce Lewis, Jr.,
*Equivariant Eilenberg-MacLane spaces and the equivariant Seifert-van Kampen suspension theorems*, Topology Appl., 48 (1992), no. 1, pp. 25–61.

On equivariant stable homotopy theory:

- L. Gaunce Lewis, Jr., section 10 of
*Splitting theorems for certain equivariant spectra*, Memoirs of the AMS, number 686, March 2000, Volume 144 (pdf)

On the Picard group of equivariant stable homotopy theory and the notion of RO(G)-grading:

- Halvard Fausk, L. Gaunce Lewis, Peter May,
*The Picard group of equivariant stable homotopy theory*, Advances in Mathematics Volume 163, Issue 1, 15 October 2001, Pages 17–33 (pdf)

On cases where $\mathbb{Z}/p$-equivariant Bredon cohomology groups are free modules over the Bredon cohomology of the point:

- Kevin K. Ferland, L. Gaunce Lewis, Jr.,
*The $RO(G)$-Graded Equivariant Ordinary Homology of $G$-Cell Complexes with Even-Dimensional Cells for $G=\mathbb{Z}/p$*, Memoirs of the AMS**167**(2004) [ams:memo-167-794, 978-ISBN:1-4704-0392-8]

category: people

Last revised on December 13, 2023 at 14:02:37. See the history of this page for a list of all contributions to it.