Anatol N. Kirillov, Masatoshi Noumi, Affine Hecke algebras and raising operators for Macdonald polynomials, Duke Math. J. 93 (1998), no. 1, 1–39, MR99j:05189a, doi

Masatoshi Noumi, Yasuhiko Yamada, Tropical Robinson–Schensted–Knuth correspondence and birational Weyl group actions, in: Representation Theory of Algebraic Groups and Quantum Groups, in: Adv. Stud. Pure Math. 40, Math. Soc. Japan, Tokyo, 2004, pp. 371–442

On an early version of quantum analogue of Borel–Weil theorem in type $A$

Masatoshi Noumi, Hirofumi Yamada, K. Mimachi, Finite-dimensional representations of the quantum group $GL_q(n;\mathbb{C})$ and the zonal spherical functions on $U_q(n-1)\backslash U_q(n)$, Japan. J. Math. (N.S.) 19(1), 31–80 (1993) doi

Masatoshi Noumi, J.V. Stokman: Askey-Wilson polynomials: an affine Hecke algebra approach, in Laredo Lectures on Orthogonal Polynomials and Special Functions (R.Alvarez-Nodarse, F.Marcellan and W.Van Assche, Eds), pp. 111–144, Nova Science Publishers, 2004. math.QA/0001033

Masatoshi Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, Adv. Math. 123 (1996) 16–77 arXiv:math/9503224

Masatoshi Noumi, T. Sugitani, Quantum symmetric spaces and related $q$-orthogonal polynomials, Group theoretical methods in physics (Singapore) (A. Arima et. al., ed.), World Scientific 1995, pp. 28–40

Mathijs S. Dijkhuizen, Masatoshi Noumi, A family of quantum projective spaces and related $q$-hypergeometric orthogonal polynomials, Trans. Amer. Math. Soc. 350 (1998) 3269–3296 doi