On super Lie algebras, Jordan superalgebras:
Victor Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96 (doi:10.1016/0001-8708(77)90017-2)
Victor Kac, A sketch of Lie superalgebra theory, Comm. Math. Phys. Volume 53, Number 1 (1977), 31-64. (euclid:cmp/1103900590)
Victor Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5 (1977), 1375–1400, (doi: 10.1080/00927877708822224)
See also:
their relation to modular forms:
Victor G. Kac, Dale H. Peterson, Affine Lie algebras and Hecke modular forms, Bull. Amer. Math. Soc. (N.S.) 3 3 (1980) 1057-1061 [bams:1183547694]
Victor G. Kac, Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Advances in Mathematics 53 2 (1984) 125-264 [doi:10.1016/0001-8708(84)90032-X]
Victor G. Kac, Minoru Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Advances in Mathematics 70 2 (1988) 156-236 [doi:10.1016/0001-8708(88)90055-2, spire:275458]
On non-integrable but “admissible” irreps of affine Lie algebras (cf. fractional level WZW models):
Victor G. Kac, Minoru Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, PNAS 85 14 (1988) 4956-4960 [doi:10.1073/pnas.85.14.4956]
Victor G. Kac, Minoru Wakimoto, Classification of modular invariant representations of affine algebras, p. 138-177 in V. G. Kač (ed.): Infinite dimensional Lie algebras and groups, Advanced series in Mathematical physics 7, World Scientific (1989) [pdf, cds:268092]
On vertex operator algebras over non-archimedean fields:
Last revised on April 20, 2023 at 10:31:44. See the history of this page for a list of all contributions to it.