On model category structures on algebras over operads in chain complexes (and introducing the model structure on unbounded chain complexes):

- Vladimir Hinich,
*Homological algebra of homotopy algebras*, Communications in Algebra**25**10 (1997) 3291-3323 [arXiv:q-alg/9702015, doi:10.1080/00927879708826055, Erratum: arXiv:math/0309453]

The model structure on dg-coalgebras (in characteristic zero) as a model structure for $L_\infty$-algebras and the Quillen equivalence between dg-Lie algebras as well as the interpretation in terms of formal $\infty$-stacks ($L_\infty$-algebras):

- Vladimir Hinich,
*DG coalgebras as formal stacks*, Journal of Pure and Applied Algebra**162**2 (2001) 209-250 [arXiv:9812034, doi:10.1016/S0022-4049(00)00121-3]

On the enriched Yoneda lemma:

- Vladimir Hinich,
*Enriched Yoneda lemma*, Theory and Applications of Categories**31**29 (2016) 833-838 [tac:31-29, pdf]

On (Lie algebra-)weight systems on chord diagrams:

- Vladimir Hinich, Arkady Vaintrob,
*Cyclic operads and algebra of chord diagrams*, Sel. math., New ser. (2002) 8: 237 (arXiv:math/0005197)

On homotopy limits of homotopy algebras and introducing the notion of the dg-nerve:

- Vladimir Hinich, Vadim Schechtman,
*On homotopy limit of homotopy algebras*, in:*K-Theory, Arithmetic and Geometry – Seminar, Moscow University, 1984–1986*, Lecture Notes in Mathematics**1289**, Spinger (2006) 240–264 [doi:10.1007/BFb0078363]

On $\infty$-colimits and Day convolution in the context of enriched $\infty$-categories:

- Vladimir Hinich,
*Colimits in enriched ∞-categories and Day convolution*, Theory and Applications of Categories**39**12 (2023) 365-422 [tac:39-12, arXiv:2101.09538]

category: people

Last revised on April 18, 2024 at 04:05:16. See the history of this page for a list of all contributions to it.