equivalences in/of -categories
The generalization of the notion of accessible functor from category theory to (∞,1)-category theory.
An (∞,1)-functor is accessible if is an accessible (∞,1)-category and there is a regular cardinal such that preserves -small filtered-colimits.
(adjoint -functors are accessible)
If an -functor between accessible (∞,1)-categories has a left or right adjoint (∞,1)-functor, then it is itself accessible.
Last revised on October 3, 2021 at 06:51:19. See the history of this page for a list of all contributions to it.