nLab asymptotic notation

Contents

Definition

Big O

Let \mathbb{R} denote the set of real numbers. Then there is a function

O:()𝒫()O:(\mathbb{R} \to \mathbb{R}) \to \mathcal{P}(\mathbb{R} \to \mathbb{R})

from the set of endofunctions on the real numbers \mathbb{R} \to \mathbb{R} to the set of subsets of endofunctions on the real numbers 𝒫()\mathcal{P}(\mathbb{R} \to \mathbb{R}), such that given a real-valued endofunction g:g:\mathbb{R} \to \mathbb{R}, an real-valued endofunction f:f:\mathbb{R} \to \mathbb{R} is said to be in O(g)O(g) if and only if there merely exists positive real numbers c: +c:\mathbb{R}^+ and n 0: +n_0:\mathbb{R}^+ such that for all positive real numbers n: +n:\mathbb{R}^+, if nn 0n \geq n_0, then |f(n)|c|g(n)|\vert f(n) \vert \leq c \vert g(n) \vert:

fO(g)c: +.n 0: +.n: +.(nn 0)(|f(n)|c|g(n)|)f \in O(g) \coloneqq \exists c:\mathbb{R}^+.\exists n_0:\mathbb{R}^+.\exists n:\mathbb{R}^+.(n \geq n_0) \implies (\vert f(n) \vert \leq c \vert g(n) \vert)

If one doesn’t have power sets in the foundations, one would have to define O(g)O(g) as a family of structural subsets: for each g:g:\mathbb{R} \to \mathbb{R}, a set O(g)O(g) and an injection i O(g):O(g)()i_O(g):O(g) \hookrightarrow (\mathbb{R} \to \mathbb{R}). Then fO(g)f \in O(g) if ff is in the image of i O(g)i_O(g).

Big Omega

Let \mathbb{R} denote the set of real numbers. Then there is a function

Ω:()𝒫()\Omega:(\mathbb{R} \to \mathbb{R}) \to \mathcal{P}(\mathbb{R} \to \mathbb{R})

from the set of endofunctions on the real numbers \mathbb{R} \to \mathbb{R} to the set of subsets of endofunctions on the real numbers 𝒫()\mathcal{P}(\mathbb{R} \to \mathbb{R}), such that given a real-valued endofunction g:g:\mathbb{R} \to \mathbb{R}, an real-valued endofunction f:f:\mathbb{R} \to \mathbb{R} is said to be in Ω(g)\Omega(g) if and only if there merely exists positive real numbers c: +c:\mathbb{R}^+ and n 0: +n_0:\mathbb{R}^+ such that for all positive real numbers n: +n:\mathbb{R}^+, if nn 0n \geq n_0, then |f(n)|c|g(n)|\vert f(n) \vert \geq c \vert g(n) \vert:

fΩ(g)c: +.n 0: +.n: +.(nn 0)(|f(n)|c|g(n)|)f \in \Omega(g) \coloneqq \exists c:\mathbb{R}^+.\exists n_0:\mathbb{R}^+.\exists n:\mathbb{R}^+.(n \geq n_0) \implies (\vert f(n) \vert \geq c \vert g(n) \vert)

If one doesn’t have power sets in the foundations, one would have to define Ω(g)\Omega(g) as a family of structural subsets: for each g:g:\mathbb{R} \to \mathbb{R}, a set Ω(g)\Omega(g) and an injection i Ω(g):Ω(g)()i_\Omega(g):\Omega(g) \hookrightarrow (\mathbb{R} \to \mathbb{R}). Then fΩ(g)f \in \Omega(g) if ff is in the image of i Ω(g)i_\Omega(g).

Big theta

Let \mathbb{R} denote the set of real numbers. Then there is a function

Θ:()𝒫()\Theta:(\mathbb{R} \to \mathbb{R}) \to \mathcal{P}(\mathbb{R} \to \mathbb{R})

defined for all real-valued endofunctions g:g:\mathbb{R} \to \mathbb{R} as the intersection of the subsets O(g)O(g) and Ω(g)\Omega(g)

Θ(g)O(g)Ω(g)\Theta(g) \coloneqq O(g) \cap \Omega(g)

By the properties of power sets, given a real-valued endofunction f:f:\mathbb{R} \to \mathbb{R}, ff is said to be in Θ(g)\Theta(g) if it is in both O(g)O(g) and Ω(g)\Omega(g).

fΘ(g)(fO(g))(fΩ(g))f \in \Theta(g) \coloneqq (f \in O(g)) \wedge (f \in \Omega(g))

If one doesn’t have power sets in the foundations, one would have to define Θ(g)\Theta(g) as a family of structural subsets: for each g:g:\mathbb{R} \to \mathbb{R}, a set Θ(g)\Theta(g) and an injection i Θ(g):Θ(g)()i_\Theta(g):\Theta(g) \hookrightarrow (\mathbb{R} \to \mathbb{R}). Then fΘ(g)f \in \Theta(g) if ff is in the image of i Θ(g)i_\Theta(g).

 Examples

Let pp be a real polynomial function with degree nn. Then pΘ(λx:.x n)p \in \Theta(\lambda x:\mathbb{R}.x^n).

References

Last revised on July 17, 2023 at 13:26:46. See the history of this page for a list of all contributions to it.