# Contents

## Definition

### In set theory

Given sets $A$ and $B$ and a function $f\colon A \to B$, the inverse function of $f$ (if it exists) is the function $f^{-1}\colon B \to A$ such that both composite functions $f \circ f^{-1}$ and $f^{-1} \circ f$ are identity functions. Note that $f$ has an inverse function if and only if $f$ is a bijection, in which case this inverse function is unique.

Inverse functions are inverse morphisms in the category Set of sets.

More generally, in any concrete category, the inverse of any isomorphism is given by the inverse of the corresponding function between underlying sets.

### In type theory

In type theory, there are two different kinds of inverse functions, quasi-inverse functions, various kinds of more or less coherent quasi-inverse functions, and inverse functions.

For more on this see at equivalence in type theory.

#### Quasi-inverse functions

Given types $A$ and $B$ and a function $f:A \to B$, a quasi-inverse function of $f$ is a function $g:B \to A$ such that $g$ is a retraction and a section of $f$.

$\prod_{b:B} (f(g(b)) =_B b) \times \prod_{a:A} (a =_A g(f(a)))$

Equivalently, there are functions $\epsilon_0(a, b):(a =_A g(b)) \to (f(a) =_B b)$ and $\eta_0(a, b):(f(a) =_B b) \to (a =_A g(b))$ for all $a:A$ and $b:B$.

$\prod_{a:A} \prod_{b:B} ((a =_A g(b)) \to (f(a) =_B b)) \times ((f(a) =_B b) \to (a =_A g(b)))$

A function $f:A \to B$ might have multiple quasi-inverse functions. The type of quasi-inverses of $f$ is given by

$\mathrm{QuasiInv}(f) \coloneqq \sum_{g:B \to A} \prod_{b:B} (f(g(b)) =_B b) \times \prod_{a:A} (a =_A g(f(a)))$

#### $n$-quasi inverse functions

There are also variants of quasi-inverse functions where they are the inverse functions for $n$-truncated types.

For example, every function $g:B \to A$ is a (-1)-quasi inverse function, because it is an inverse function for h-propositions $A$ and $B$.

A quasi-inverse function is a 0-quasi inverse function, because it is an inverse function for h-sets $A$ and $B$.

A 1-quasi-inverse function is a quasi-inverse function with functions $\epsilon_0(a, b):(a =_A g(b)) \to (f(a) =_B b)$ and $\eta_0(a, b):(f(a) =_B b) \to (a =_A g(b))$ for all $a:A$ and $b:B$ such that for all $c:a =_A g(b)$ and $d:f(a) =_B b$, there are functions

$\epsilon_1(a, b, c, d):(\epsilon_0(a, b, c) =_{f(a) =_B b} d) \to (c =_{a =_A g(b)} \eta_0(a, b, d))$
$\eta_1(a, b, c, d):(c =_{a =_A g(b)} \eta_0(a, b, d)) \to (\epsilon_0(a, b, c) =_{f(a) =_B b} d)$

This is an inverse function for h-groupoids $A$ and $B$.

So on and so forth.

#### Inverse functions

Given types $A$ and $B$ and a function $f:A \to B$, an inverse function of $f$ is a function $g:B \to A$ with a function $\epsilon(a, b):(f(a) =_B b) \to (a =_A g(b))$ for all $a:A$ and $b:B$, such that for all identities $p:a =_A g(b)$, the fiber of $\epsilon(a, b)$ at $p$ is contractible.

$\mathrm{isInv}(f, g) \coloneqq \prod_{a:A} \prod_{b:B} \sum_{\epsilon(a, b):(f(a) =_B b) \to (a =_A g(b))} \prod_{p:a =_A g(b)} \mathrm{isContr}(\mathrm{fiber}(\epsilon(a, b), p))$

#### Coherent inverse functions

Given types $A$ and $B$ and a function $f:A \to B$, a coherent inverse function of $f$ is a quasi-inverse function $g:B \to A$ with homotopies

$G:\prod_{x:B} f(g(x)) =_B x \qquad H:\prod_{x:A} g(f(x)) =_A x$

which additionally has one of the two homotopies

$K:\prod_{x:A} \mathrm{ap}_{B}(f, g(f(x)), x, H(x)) =_{g(f(x)) =_A x} G(f(x)) \qquad L:\prod_{x:B} H(g(x)) =_{f(g(x)) =_B x} \mathrm{ap}_{A}(g, f(g(x)), x, G(x))$

The type of coherent inverse functions of $f$ is given by one of the following types

$\mathrm{CohInv}_1(f) \coloneqq \sum_{g:B \to A} \sum_{G:\prod_{x:B} f(g(x)) =_B x} \sum_{H:\prod_{x:A} g(f(x)) =_A x} \left(\prod_{x:A} \mathrm{ap}_{B}(f, g(f(x)), x, H(x)) =_{g(f(x)) =_A x} G(f(x))\right)$
$\mathrm{CohInv}_2(f) \coloneqq \sum_{g:B \to A} \sum_{G:\prod_{x:B} f(g(x)) =_B x} \sum_{H:\prod_{x:A} g(f(x)) =_A x} \left(\prod_{x:B} H(g(x)) =_{f(g(x)) =_B x} \mathrm{ap}_{A}(g, f(g(x)), x, G(x))\right)$

$f$ is called a half adjoint equivalence if it has a coherent inverse function.

## Properties

Given functions $f:A \to B$ and $g:B \to A$ and homotopies $G:\prod_{x:B} f(g(x)) =_B x$ and $H:\prod_{x:A} g(f(x)) =_A x$, there are elements

$\mathrm{QInvToCohInv}_1(f, g, G, H):\prod_{x:A} \mathrm{ap}_{B}(f, g(f(x)), x, H(x)) =_{g(f(x)) =_A x} G(f(x))$
$\mathrm{QInvToCohInv}_2(f, g, G, H):\prod_{x:B} H(g(x)) =_{f(g(x)) =_B x} \mathrm{ap}_{A}(g, f(g(x)), x, G(x))$

which satisfies the commutative squares for all elements $a:A$ and $b:B$

$\array{& f(g(f(g(b)))) & \overset{G(f(g(b))}= & f(g(b)) & \\ \mathrm{ap}_{B}(f, g(f(b)), b, H(b)) & \Vert & =_{f(g(f(g(b)))) =_B b} & \Vert & \mathrm{QInvToCohInv}_2(f, g, G, H)(b) \\ & f(g(b)) & \underset{G(b)}= & b & \\ }$
$\array{& g(f(g(f(a)))) & \overset{H(g(f(a))}= & g(f(a)) & \\ \mathrm{ap}_{A}(g, f(g(a)), a, G(a)) & \Vert & =_{g(f(g(f(a)))) =_A a} & \Vert & \mathrm{QInvToCohInv}_1(f, g, G, H)(a) \\ & g(f(a)) & \underset{H(a)}= & a & \\ }$

Thus, there are functions

$\lambda g:B \to A.\lambda G:\prod_{x:B} f(g(x)) =_B x.\lambda H:\prod_{x:A} g(f(x)) =_A x.\mathrm{QInvToCohInv}_1(f, g, G, H):\mathrm{QInv}(f) \to \mathrm{CohInv}_1(f)$

and

$\lambda g:B \to A.\lambda G:\prod_{x:B} f(g(x)) =_B x.\lambda H:\prod_{x:A} g(f(x)) =_A x.\mathrm{QInvToCohInv}_2(f, g, G, H):\mathrm{QInv}(f) \to \mathrm{CohInv}_2(f)$

Every coherent inverse function is a quasi-inverse function by forgetting the additional coherence condition.

###### Theorem

If a function $f:A \to B$ has a coherent inverse function, then for all elements $b:B$ the fiber of $f$ at $b$ is contractible.

###### Proof

Not really related

## References

Last revised on December 31, 2023 at 21:10:41. See the history of this page for a list of all contributions to it.