nLab open-closed homotopy algebra

Contents

Contents

Definition

Let = o c\mathcal{H}=\mathcal{H}_o\oplus\mathcal{H}_c be a \mathbb{Z}-graded vector space, and 𝔨\mathfrak{k} a collection of nn-ary maps that make ( c,𝔩)(\mathcal{H}_c,\mathfrak{l}) an L L_\infty -algebra. If there is a collection of maps

𝔫={n k,l:( c k)( o) l o} k,l0 \mathfrak{n} \;=\; \big\{ n_{k,l} \colon (\mathcal{H}_c ^{\otimes k})\otimes (\mathcal{H}_o )^{\otimes l} \to \mathcal{H}_o \big\}_{k,l\geq 0}

each graded-symmetric for ( c k)(\mathcal{H}_c ^{\otimes k}) satisfying the identities

p+r=n σS n(1) ϵ(σ)p!r!n 1+r,m(l p(c σ(1),,c σ(p)),c σ(p+1),,c σ(n);o 1,,o m) + p+r=n i+s+j=m σS n(1) μ p,i(σ)p!r!n p,i+1+j(c σ(1),,c σ(p);o 1,,o i,n r,s(c σ(p+1),,c σ(n);o i+1,,o i+s),o i+s+1,,o m) =0, \begin{array}{l} \sum_{p+r=n} \sum_{\sigma\in S_n} \frac{(-1)^{\epsilon(\sigma)}}{p! r!} n_{1+r,m}(l_p (c_{\sigma (1)} , \cdots , c_{\sigma (p)}),c_{\sigma (p+1)}, \cdots, c_{\sigma (n)}; o_1, \cdots, o_m) \\ \;+\; \sum_{p+r=n} \sum_{i+s+j=m} \sum_{\sigma\in S_n} \frac{(-1)^{\mu_{p,i}(\sigma)}}{p! r!} n_{p,i+1+j} (c_{\sigma (1)}, \cdots , c_{\sigma (p); o_1, \cdots, o_i, n_{r,s}(c_{\sigma (p+1), \cdots, c_{\sigma(n)};o_{i+1}, \cdots, o_{i+s}}}), o_{i+s+1}, \cdots, o_m) \\ \;=\; 0 \,, \end{array}

where the sign exponent μ p,i(σ)\mu_{p,i}(\sigma) is defined as

μ p,i(σ)=ϵ(σ)+(c σ(1)++c σ(p))+(o 1++o i)+(o 1++o i)(c σ(p+1++c σ(n)) \mu_{p,i}(\sigma) = \epsilon(\sigma)+ (c_{\sigma (1)}+ \cdots + c_{\sigma(p)}) + (o_1+ \cdots + o_i) + (o_1+ \cdots + o_i)(c_{\sigma (p+1}+ \cdots + c_{\sigma (n)})

then (,𝔩,𝔫)(\mathcal{H},\mathfrak{l},\mathfrak{n}) is called a weak open-closed homotopy algebra (weak OCHA).

If furthermore one has that l 0=n 0,0=0l_0=n_{0,0} =0 then this is an open-closed homotopy algebra (OCHA).

Properties

By definition, ( c,𝔩)(\mathcal{H}_c,\mathfrak{l}) is a Lie-infinity-algebra. Furthermore, given a (weak) OCHA one can show that ( o,{n 0,k})(\mathcal{H}_o,\{n_{0,k}\}) is an (weak) A-infinity algebra. These are interpreted as the closed, and open sectors, respectively (see string field theory for more on this).

References

General:

Last revised on October 5, 2023 at 03:15:41. See the history of this page for a list of all contributions to it.