quantum flag manifold

Quantum flag manifolds (or varieties) are certain quantum homogeneous spaces of duals of Drinfel’d-Jimbo quantum groups or their relatives, viewed as noncommutative quotients with respect to (co)action of the corresponding quantum Borel subgroup.

Usual flag varieties are projective varieties, hence they have a (commutative) graded coordinate ring. Thus most of the approaches to quantum flag varieties, define the quantum flag variety via its noncommutative graded algebra of functions (cf. the book by Joseph).

  • Yan S. Soĭbelʹman, О квантовом многообразии флагов, Функц. анализ и его прил. 26 (1992), no. 3, 90–92, pdf (Russian); translation On the quantum flag manifold, Funct. Anal. Appl. 26 (1992), no. 3, 225–227 doi

  • V. A. Lunts, A. L. Rosenberg, Localization for quantum groups, Selecta Math. (N.S.) 5 (1999), no. 1, pp. 123–159 (doi).

  • Zoran Škoda, Localizations for construction of quantum coset spaces, in “Noncommutative geometry and Quantum groups”, W.Pusz, P.M. Hajac, eds. Banach Center Publications 61, pp. 265–298, Warszawa 2003, math.QA/0301090.

  • Ulrich Krähmer, Dirac operators on quantum flag manifolds, Lett. Math. Phys. 67/1 (2004) 49-59, MR2005b:58009, doi, math.QA/0305071

  • A. Joseph, Quantum groups and their primitive ideals, Springer 1995.

  • E. Taft, J. Towber, Quantum deformation of flag schemes and Grassmann schemes q-deformation of the shape-algebra for GL(n), J. Algebra 142 (1991), 1-36,

  • Quantum multilinear algebra, Mitsuyasu Hashimoto and Takahiro Hayashi Source: Tohoku Math. J. (2) Volume 44, Number 4 (1992), 471-521, euclid

Last revised on October 8, 2011 at 12:15:06. See the history of this page for a list of all contributions to it.