nLab rational interval coalgebra

Contents

Contents

Definition

A rational interval coalgebra is a set II with a linear order <\lt, elements 0I0\in I, 1I1 \in I, and a partial function from ×\mathbb{N} \times \mathbb{N} to the set of endofunctions in II, III \to I

z:{(m,n)×|isPrime(n)(m<n)}(II)z:\{(m,n) \in \mathbb{N} \times \mathbb{N} \vert isPrime(n) \wedge (m \lt n)\} \to (I \to I)

such that

  • for all elements aIa \in I, 0<a0 \lt a or a<1a \lt 1

  • for all natural numbers nn \in \mathbb{N} and mm \in \mathbb{N}, nn is a prime number, and if m<nm \lt n, then z(n,m)(0)=0z(n,m)(0) = 0

  • for all natural numbers nn \in \mathbb{N} and mm \in \mathbb{N}, nn is a prime number, and if m<nm \lt n, then z(n,m)(1)=1z(n,m)(1) = 1

  • for all natural numbers nn \in \mathbb{N} and mm \in \mathbb{N}, nn is a prime number, and if m+1<nm + 1 \lt n, then for all elements aIa \in I, it is not true that both 0<z(n,m+1)(a)0 \lt z(n,m+1)(a) and z(n,m)(a)<1z(n,m)(a) \lt 1.

Examples

See also

Last revised on May 4, 2022 at 13:52:12. See the history of this page for a list of all contributions to it.