The observation that the categorical semantics of well-founded inductive types (-types) is given by initial algebras over polynomial endofunctors on the type system:
Peter Dybjer, Representing inductively defined sets by wellorderings in Martin-LΓΆfβs type theory, Theoretical Computer Science 176 1β2 (1997) 329-335 doi:10.1016/S0304-3975(96)00145-4
Ieke Moerdijk, Erik Palmgren, Wellfounded trees in categories, Annals of Pure and Applied Logic 104 1-3 (2000) 189-218 doi:10.1016/S0168-0072(00)00012-9
Further discussion:
Michael Abbott, Thorsten Altenkirch, Neil Ghani, Containers: Constructing strictly positive types, Theoretical Computer Science 342 1 (2005) 3-27 doi:10.1016/j.tcs.2005.06.002
Benno van den Berg, Ieke Moerdijk, -types in sheaves [arXiv:0810.2398]
Generalization to inductive families (dependent -types):
Nicola Gambino, Martin Hyland, Wellfounded Trees and Dependent Polynomial Functors, in: Types for Proofs and Programs TYPES 200, Lecture Notes in Computer Science 3085, Springer (2004) doi:10.1007/978-3-540-24849-1_14
Michael Abbott, Thorsten Altenkirch, Neil Ghani: Representing Nested Inductive Types using W-types, in: Automata, Languages and Programming, ICALP 2004, Lecture Notes in Computer Science, 3142, Springer (2004) doi:10.1007/978-3-540-27836-8_8, pdf
exposition: Inductive Types for Free β Representing nested inductive types using W-types, talk at ICALP (2004) pdf
Generalization to homotopy-initial algebras as categorical semantics for -types in homotopy type theory:
Steve Awodey, Nicola Gambino, Kristina Sojakova, Inductive types in homotopy type theory, LICSβ12: (2012) 95β104 arXiv:1201.3898, doi:10.1109/LICS.2012.21, Coq code
Benno van den Berg, Ieke Moerdijk, W-types in Homotopy Type Theory, Mathematical Structures in Computer Science 25 Special Issue 5: From type theory and homotopy theory to Univalent Foundations of Mathematics (2015) 1100-1115 arXiv:1307.2765, doi:10.1017/S0960129514000516
Kristina Sojakova, Higher Inductive Types as Homotopy-Initial Algebras, ACM SIGPLAN Notices 50 1 (2015) 31β42 arXiv:1402.0761, doi:10.1145/2775051.2676983
Steve Awodey, Nicola Gambino, Kristina Sojakova, Homotopy-initial algebras in type theory, Journal of the ACM 63 6 (2017) 1β45 arXiv:1504.05531, doi:10.1145/3006383
Benno van den Berg, Ieke Moerdijk, W-types in Homotopy Type Theory, Mathematical Structures in Computer Science 25 Special Issue 5: From type theory and homotopy theory to Univalent Foundations of Mathematics (2015) 1100-1115 [arXiv:1307.2765, doi:10.1017/S0960129514000516]
Towards combining generalization to dependent and homotopical W-types:
Created on January 3, 2023 at 14:51:13. See the history of this page for a list of all contributions to it.