sign rules in homological superalgebra -- table

sign rule for differential graded-commutative superalgebras
(different but equivalent)

A\phantom{A}Deligne’s conventionA\phantom{A}A\phantom{A}Bernstein’s conventionA\phantom{A}
A\phantom{A}α iα j= \alpha_i \cdot \alpha_j = A\phantom{A}A\phantom{A}(1) (n in j+σ iσ j)α jα i(-1)^{ (n_i \cdot n_j + \sigma_i \cdot \sigma_j) } \alpha_j \cdot \alpha_iA\phantom{A}A\phantom{A}(1) (n i+σ i)(n j+σ j)α jα i (-1)^{ (n_i + \sigma_i) \cdot (n_j + \sigma_j) } \alpha_j \cdot \alpha_iA\phantom{A}
A\phantom{A}common inA\phantom{A}
A\phantom{A}discussion ofA\phantom{A}
A\phantom{A}supergravityA\phantom{A}A\phantom{A}AKSZ sigma-modelsA\phantom{A}
A\phantom{A}Bonora et. al 87,A\phantom{A}
A\phantom{A}Castellani-D’Auria-Fré 91,A\phantom{A}
A\phantom{A}Deligne-Freed 99A\phantom{A}
A\phantom{A}AKSZ 95,A\phantom{A}
A\phantom{A}Carchedi-Roytenberg 12A\phantom{A}

Last revised on July 27, 2018 at 06:02:56. See the history of this page for a list of all contributions to it.