nLab skew-simplicial set




One can possibly enlarge the simplex category to a one of the several interesting categories in homological algebra like cycle category of Connes and the skeletal category of finite sets. Such examples can be founded axiomatically as kind of extensions of the simplex category by a group with special properties. The resulting notion is a skew-simplicial group (synonym: crossed simplicial group): the presheaves on a skew-simplicial group are skew-simplicial sets of the corresponding kind. In addition to cyclic and symmetric simplicial sets other important applications are dihedral? and quaternionic? sets/homology (cf. Loday MR89e:18024). The formalism has been found by Krasauskas and a bit later and independently also by Fiedorowicz and Loday.


The important special cases are symmetric set, cyclic set, simplicial set, dihedral set?.

Original references are

A recent treatise on connection to geometry is

  • Tobias Dyckerhoff, Mikhail Kapranov, Crossed simplicial groups and structured surfaces, arxiv/1403.5799

Last revised on August 30, 2016 at 14:34:48. See the history of this page for a list of all contributions to it.