Symplectic reflection algebra is certain multiparametric deformation of smash product of a finite group of automorphisms of a sympletic vector space and the polynomial algebra of that vector space. It is related to the coordinate ring of a universal Poisson deformation of the quotient singularity of that action.

- P. Etingof, V. Ginzburg,
*Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism*, Invent. math.**147**, 243–348 (2002) doi arXiv:math.AG/0011114 - Pavel Etingof, Wee Liang Gan, Victor Ginzburg, Alexei Oblomkov,
*Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products*, arXiv:math.RT/0511489 - Pavel Etingof,
*Symplectic reflection algebras and affine Lie algebras*, arXiv:1011.4584 - I. G. Gordon,
*Symplectic reflection algebras*, in: Trends in Representation Theory of Algebras and Related Topics (Andrzej Skowroński, editor) - K. Brown, I. Gordon,
*Poisson orders, symplectic reflection algebras and representation theory*, J. Reine Angew. Math.**559**(2003) 193–216 - Ivan Losev,
*Procesi bundles and symplectic reflection algebras*, In: M. Hitrik, D. Tamarkin, B. Tsygan, S. Zelditch (eds), Algebraic and Analytic Microlocal Analysis. AAMA 2013. Springer Proc. in Math. & Stat.**269**; arXiv:1501.00643

category: algebra

Created on September 20, 2022 at 19:17:52. See the history of this page for a list of all contributions to it.