nLab symplectic reflection algebra

Symplectic reflection algebra is certain multiparametric deformation of smash product of a finite group of automorphisms of a sympletic vector space and the polynomial algebra of that vector space. It is related to the coordinate ring of a universal Poisson deformation of the quotient singularity of that action.

  • P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. math. 147, 243–348 (2002) doi arXiv:math.AG/0011114
  • Pavel Etingof, Wee Liang Gan, Victor Ginzburg, Alexei Oblomkov, Harish-Chandra homomorphisms and symplectic reflection algebras for wreath-products, arXiv:math.RT/0511489
  • Pavel Etingof, Symplectic reflection algebras and affine Lie algebras, arXiv:1011.4584
  • I. G. Gordon, Symplectic reflection algebras, in: Trends in Representation Theory of Algebras and Related Topics (Andrzej Skowroński, editor)
  • K. Brown, I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003) 193–216
  • Ivan Losev, Procesi bundles and symplectic reflection algebras, In: M. Hitrik, D. Tamarkin, B. Tsygan, S. Zelditch (eds), Algebraic and Analytic Microlocal Analysis. AAMA 2013. Springer Proc. in Math. & Stat. 269; arXiv:1501.00643
category: algebra

Created on September 20, 2022 at 19:17:52. See the history of this page for a list of all contributions to it.