On triangulation conjectures and triangulation theorems on existence of triangulations of manifolds.
Review:
The question of triangulability of smooth manifolds was first raised in
and for general topological manifolds in
Proof that every surface admits a combinatorial triangulation:
Proof that every smooth manifold admits a combinatorial triangulation:
Proof that every smooth manifold admits a combinatorial triangulation is due to
Stewart S. Cairns, Triangulation of the manifold of class one, Bull. Amer. Math. Soc. 41(8): 549-552 (euclid:1183498332)
J. H. C. Whitehead, On -complexes, Ann. of Math. (2) 41 (1940), 809–824 (doi:10.2307/1968861, jstor:1968861)
with further accounts in:
Hassler Whitney, Section IV.B of: Geometric Integration Theory (1957), Princeton Legacy Library (2016) (doi:10.1515/9781400877577)
Stewart S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389-390 (doi:10.1090/S0002-9904-1961-10631-9)
(but see MO:a/177199, where this “simpler argument” is claimed to be wrong)
Jacob Lurie, Existence of Triangulations (pdf), Lecture 4 in: Topics in Geometric Topology
A detailed exposition is available in Chapter II (see Thm. 10.6) of
Generalization to existence of equivariant triangulation for smooth G-manifolds (equivariant triangulation theorem):
Sören Illman, Equivariant algebraic topology, Princeton University 1972 (pdf)
Sören Illman, Smooth equivariant triangulations of -manifolds for a finite group, Math. Ann. (1978) 233: 199 (doi:10.1007/BF01405351)
Sören Illman, The Equivariant Triangulation Theorem for Actions of Compact Lie Groups, Mathematische Annalen (1983) Volume: 262, page 487-502 (dml:163720)
Proof that every 3-manifold admits the structure of a smooth manifold and hence of a combinatorial triangulation:
Proof that in every dimension there exist topological manifolds without combinatorial triangulation:
Proof that in every dimension there exist topological manifolds without simplicial triangulation:
Last revised on August 14, 2021 at 12:41:50. See the history of this page for a list of all contributions to it.