nLab
unramifiable polynomial
Contents
Definition
Given a notion of real number ℝ \mathbb{R} , let σ j : ℝ n → ℝ \sigma_j:\mathbb{R}^n \to \mathbb{R} denote the j j -th elementary symmetric polynomial function in ℝ \mathbb{R} , and the polynomials functions e j : ℝ n → ℝ e_j:\mathbb{R}^n \to \mathbb{R} as
e j ( x 1 , x 2 … x n ) ≔ ∏ k ≠ j ( x k − x j ) e_j(x_1, x_2 \ldots x_n) \coloneqq \prod_{k \neq j} (x_k - x_j)
Let us define the polynomial function f : ℝ n + 1 → ℝ f:\mathbb{R}^{n+1} \to \mathbb{R} as
f ( y , x 1 , x 2 … x n ) ≔ ∏ j = 0 n ( y + x j ) = ∑ j = 0 n σ n − j ( x 1 , x 2 , … x n ) y j f(y, x_1, x_2 \ldots x_n) \coloneqq \prod_{j = 0}^n (y + x_j) = \sum_{j = 0}^n \sigma_{n - j}(x_1, x_2, \ldots x_n) y^j
Now, σ j ( e 1 ( x 1 , x 2 … x n ) , e 2 ( x 1 , x 2 … x n ) , … e n ( x 1 , x 2 … x n ) ) \sigma_j(e_1(x_1, x_2 \ldots x_n), e_2(x_1, x_2 \ldots x_n), \ldots e_n(x_1, x_2 \ldots x_n)) is by definition also a symmetric polynomial function. Thus, there exists a polynomial function d j : ℝ n → ℝ d_j:\mathbb{R}^n \to \mathbb{R} such that
d j ( σ 1 ( x 1 , x 2 , … x n ) , σ 2 ( x 1 , x 2 , … x n ) , … σ n ( x 1 , x 2 , … x n ) ) = σ j ( e 1 ( x 1 , x 2 … x n ) , e 2 ( x 1 , x 2 … x n ) , … e n ( x 1 , x 2 … x n ) ) d_j(\sigma_1(x_1, x_2, \ldots x_n), \sigma_2(x_1, x_2, \ldots x_n), \ldots \sigma_n(x_1, x_2, \ldots x_n)) = \sigma_j(e_1(x_1, x_2 \ldots x_n), e_2(x_1, x_2 \ldots x_n), \ldots e_n(x_1, x_2 \ldots x_n))
The function f f is unramifiable if there exists a j j such that d j ( σ 1 ( x 1 , x 2 , … x n ) , σ 2 ( x 1 , x 2 , … x n ) , … σ n ( x 1 , x 2 , … x n ) ) d_j(\sigma_1(x_1, x_2, \ldots x_n), \sigma_2(x_1, x_2, \ldots x_n), \ldots \sigma_n(x_1, x_2, \ldots x_n)) is invertible in ℝ \mathbb{R} .
References
Wim Ruitenberg , Constructing Roots of Polynomials over the Complex Numbers , Computational Aspects of Lie Group Representations and Related Topics, CWI Tract, 84 Centre for Mathematics and Computer Science, Amsterdam (1991) 107–128 [pdf , pdf ]
Last revised on May 20, 2023 at 15:03:09.
See the history of this page for a list of all contributions to it.