nLab weak function extensionality

Contents

Definition

The principle of weak function extensionality states that the dependent product type of a family of contractible types is itself contractible.

ΓAtypeΓ,x:ABtypeΓ,x:Ap(x):isContr(B(x))Γweakfunext(λx.p(x)):isContr( x:AB(x))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash p(x):\mathrm{isContr}(B(x))}{\Gamma \vdash \mathrm{weakfunext}(\lambda x.p(x)):\mathrm{isContr}\left(\prod_{x:A} B(x)\right)}

This is equivalent to the condition that the dependent product type of a family of h-propositions itself is an h-proposition:

ΓAtypeΓ,x:ABtypeΓ,x:Ap(x):isProp(B(x))Γweakfunext(λx.p(x)):isProp( x:AB(x))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash p(x):\mathrm{isProp}(B(x))}{\Gamma \vdash \mathrm{weakfunext}(\lambda x.p(x)):\mathrm{isProp}\left(\prod_{x:A} B(x)\right)}

Weak function extensionality is not equivalent to the principle of unique choice. The principle of unique choice states that the dependent product type of a family of contractible types is pointed

ΓAtypeΓ,x:ABtypeΓ,x:Ap(x):isContr(B(x))Γuniquechoice(λx.p(x)): x:AB(x)\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash p(x):\mathrm{isContr}(B(x))}{\Gamma\vdash \mathrm{uniquechoice}(\lambda x.p(x)):\prod_{x:A} B(x)}

Properties

 See also

 References

Weak function extensionality appears in section 13.1 of

Last revised on September 19, 2024 at 18:15:13. See the history of this page for a list of all contributions to it.