nLab impredicative polymorphism

Context

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Contents

 Definition

For universes

A type universe UU has impredicative polymorphism or is impredicative if dependent product types of UU-indexed families of UU-small types are themselves UU-small.

For Russell universes, this is given by the inference rule

Γ,X:UP(X):UΓ X:UP(X):U\frac{\Gamma, X:U \vdash P(X):U}{\Gamma \vdash \prod_{X:U} P(X):U}

The situation is a little bit more complicated for Tarski universes. Like all other conditions on Tarski universes, there is an orthogonal axis for which impredicativity might vary: weak or strict impredicativity, which has to do with whether one uses an equivalence of types or judgmental equality to define small types.

P:UU P:UT( P) X:UT(P(X))\prod_{P:U \to U} \sum_{\forall_P:U} T(\forall_P) \simeq \prod_{X:U} T(P(X))
  • A Tarski universe (U,T)(U, T) has strict impredicative polymorphism or is strictly impredicative if for all functions P:UUP:U \to U the dependent product type X:UP(X)\prod_{X:U} P(X) is U U -small
Γ,X:UP(X):UΓX:U.P(X):UΓ,X:UP(X):UΓT(X:U.P(X)) X:UT(P(X))type\frac{\Gamma, X:U \vdash P(X):U}{\Gamma \vdash \forall X:U.P(X):U} \qquad \frac{\Gamma, X:U \vdash P(X):U}{\Gamma \vdash T(\forall X:U.P(X)) \equiv \prod_{X:U} T(P(X)) \; \mathrm{type}}

For dependent type theories

In the presentation of dependent type theory using a hierarchy of universes, impredicative polymorphism is a resizing axiom which says that for all endofunctions P:U 0U 0P:U_0 \to U_0 on the first type universe U 0U_0, the dependent product type X:U 0P(X)\prod_{X:U_0} P(X) is (essentially) U 0 U_0 -small.

In dependent type theory with type variables, presented without universes but with a single type judgment, while there is no universe U 0U_0 to quantify over for the dependent product type, using the type variable we can add an untyped version of the dependent product type ΠX.P(X)\Pi X.P(X) to the type theory for impredicative polymorphism. This type is similar to universal quantification X.P(X)\forall X.P(X) in untyped first-order logic, and ΠX.P(X)\Pi X.P(X) plays the same role in this presentation of dependent type theory that the type X:U 0P(X)\prod_{X:U_0} P(X) does for the other presentation of dependnet type theory. The rules for ΠX.P(X)\Pi X.P(X) are as follows:

Formation rule:

Γ,XtypeP(X)typeΓΠX.P(X)type\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type}}{\Gamma \vdash \Pi X.P(X) \; \mathrm{type}}

Introduction rule:

Γ,XtypeP(X)typeΓ,Xtypep(X):P(x)ΓλX.p(X):ΠX.P(X)\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma, X \; \mathrm{type} \vdash p(X):P(x)}{\Gamma \vdash \lambda X.p(X):\Pi X.P(X)}

Elimination rule:

Γ,XtypeP(X)typeΓp:ΠX.P(X)Γ,Atypeev(p,X):P(X)\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma \vdash p:\Pi X.P(X)}{\Gamma, A \; \mathrm{type} \vdash \mathrm{ev}(p, X):P(X)}

Computation rules:

  • Judgmental computation rule:
    Γ,XtypeP(X)typeΓ,Xtypep(X):P(x)Γ,Xtypeev(λX.p(X),X)p(X):P(X)\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma, X \; \mathrm{type} \vdash p(X):P(x)}{\Gamma, X \; \mathrm{type} \vdash \mathrm{ev}(\lambda X.p(X), X) \equiv p(X):P(X)}
  • Typal computation rule:
    Γ,XtypeP(X)typeΓ,Xtypep(X):P(x)Γ,Xtypeβ Π P,p(X):ev(λX.p(X),X)= P(X)p(X)\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma, X \; \mathrm{type} \vdash p(X):P(x)}{\Gamma, X \; \mathrm{type} \vdash \beta_\Pi^{P, p}(X):\mathrm{ev}(\lambda X.p(X), X) =_{P(X)} p(X)}

Uniqueness rules:

  • Judgmental uniqueness rule:
    Γ,XtypeP(X)typeΓp:ΠX.P(X)ΓλX.ev(p,X)p:ΠX.P(x)\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma \vdash p:\Pi X.P(X)}{\Gamma \vdash \lambda X.\mathrm{ev}(p, X) \equiv p:\Pi X.P(x)}
  • Typal uniqueness rule:
    Γ,XtypeP(X)typeΓp:ΠX.P(X)Γη Π P(p):λX.ev(p,X)= ΠX.P(x)p\frac{\Gamma, X \; \mathrm{type} \vdash P(X) \; \mathrm{type} \quad \Gamma \vdash p:\Pi X.P(X)}{\Gamma \vdash \eta_\Pi^P(p):\lambda X.\mathrm{ev}(p, X) =_{\Pi X.P(x)} p}

 Examples of universes with impredicative polymorphism

 References

  • Andrew Pitts, Nontrivial Power Types can’t be Subtypes of Polymorphic Types (pdf)

  • Taichi Uemura, Cubical Assemblies, a Univalent and Impredicative Universe and a Failure of Propositional Resizing, in 24th International Conference on Types for Proofs and Programs (TYPES 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 130, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019) (doi:10.4230/LIPIcs.TYPES.2018.7, arXiv:1803.06649)

  • Dependent Type Theory vs Polymorphic Type Theory, Category Theory Zulip (web)

  • Pierre-Marie Pédrot, Why not have Prop : Set in Coq?, Proof Assistant StackExchange, 27 June 2022. (web)

  • Mere propositions and Consistency with Impredicativity, Excluded Middle and Large Elimination, Proof Assistant StackExchange (web)

Last revised on December 16, 2024 at 23:11:23. See the history of this page for a list of all contributions to it.