In an expansion of a -adic number the are called digits. Usually these digits are defined to be taken elements of the set .
Equivalently the digits can be defined to be taken from the set . Elements from this set are called Teichmüller digits or Teichmüller representatives.
The set is in bijection with the finite field? . The set of (countably) infinite sequences of elements in hence is in bijection to the set of -adic integers. There is a ring structure on called Witt ring structure such that all ‘’truncated expansion polynomials’‘ called Witt polynomials are morphisms
of groups.