Spahn HTT, A.3.2 (Rev #1, changes)

Showing changes from revision #0 to #1: Added | Removed | Changed

Definition A.3.2.1

Let SS be a monoidal model category.

A functor F:CC F:C\to C^\prime in sSetCatsSet Cat is a weak equivaleence if the induced functor hChC hC\to h C^\prime is an equivalence of hSh S-enriched categories.

In other words: F is a weak equivalence iff

(1) For every pair X,YCX,Y\in C, the induced map

Map C(X,Y)Map C (F(X),F(Y))Map_C (X,Y)\to Map_{C^\prime} (F(X), F(Y))

is a weak equivalence in SS.

(2) FF is essentially surjective on the level of homotopy categories.

The following definition says a functor between categories is called a quasi fibrations if every isomorphism has a lift with respect to FF.

Definition A.3.2.7

Let FF:C\to D$ be a functor between classical categories.

FF is called a quasi-fibration if, for every object xCx\in C and every isomorphism f:F(x)yf:F(x)\to y in DD, there exists an isomorphism f¯:xy¯\overline f:x\to \overline y in CC such that F(f)=fF(f)=f.

Theorem 3.2.24

Let SS be an excellent model category. Then:

  1. An SS-enriched category CC is a fibrant object of sSetCatsSet Cat iff it is locally fibrant: i.e. for all X,YCX,Y\in C the hom object Map C(X,Y)SMap_C (X,Y)\in S is fibrant.

  2. Let F:CDF:C\to D be a SS-enriched functor where DD is a fibrant object of sSetCatsSet Cat. Then FF is a fibration iff FF is a local fibration.

Definition

Let SS be a monoidal category. Let CC be an SS-enriched category.

(1) A morphism ff in CC is called an equivalence if the homotopy class [f][f] of ff is an isomorphism in hCh C.

(2) CC is called locally fibrant object if for every pair of objects X,YCX,Y\in C, the mapping space Map C(X,Y)Map_C(X,Y) is a fibrant object of SS.

(3) An SS-enriched functor F:CC F:C\to C^\prime is called a local fibration if the following conditions are satisfied:

(3.i) Map C(X,Y)Map C (FX,FY)Map_C (X,Y)\to Map_{C^\prime} (FX,FY) is a fibration in SS for every X,YCX,Y\in C.

(3.ii) The induced map hChC h C\to h C^\prime is a quasi-fibration of categories.

Definition A.3.2.16

(excellent model category)

A model category SS is called excellent model category if it is equipped with a symmetric monoidal structure and satisfies the following conditions

(A1) SS is combinatorial.

(A2) Every monomorphism in SS is a cofibration and the collection of cofibrations in SS is stable under products.

(A3) The collection of weak equivalencies in SS is stable under filtered colimits.

(A4) :S×SS\otimes:S\times S\to S is a Quillen bifunctor.

(A5) The monoidal model category SS satisfies the invertibility hypothesis.

Revision on June 29, 2012 at 19:21:12 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.