semantics | syntax | identifier |
object classifier | Type | Type Type |
object | type | |
fibration(display map) | dependent type | x : X - P x : Type x : X | - P x : Type |
section | term | X : Type |
pullback | substitution | {y : Y & {a : A & f y ~~> p a}} |
direct image | dependent product | |
internal hom in slice | function type | |
postcomposition | dependent sum | { x : X & P x } : Type { x : X & P x } : Type or sig T (fun (x : X) => P x) : Type. sig T (fun (x : X) => P x) : Type. or sig T P : Type sig T P : Type |
fiberproduct | product type | |
Beck-Chevalley condition of codomain fibration | substitution commutes with dependent sum | |
path space object | identity type | paths X : X -> X -> Type Id X : X -> X -> Type |
(-2)-truncated morphism/equivalence | true/unit type | |
(-1)-truncated morphism/monomorphism | proposition | |
direct image of (-1)-truncated morphism | universal quantifier | forall x : X, P x forall x : X, P x |
(-1)-truncation of postcomposition of (-1)-truncated morphism | existential quantifier | exists x : X, P x exists x : X, P x |