Spahn examples of (group) schemes (Rev #1, changes)

Showing changes from revision #0 to #1: Added | Removed | Changed

Contents

constant (group) scheme

Sch kSch_k is copowered (= tensored)? over SetSet. We define the constant kk-scheme on a set EE by

E k:=ESp kk= eESp kkE_k:=E\otimes Sp_k k=\coprod_{e\in E}Sp_k k

For a scheme XX we compute M k(E k,E)=Set(Sp kk,X) E=X(k) E=Set(E,X(k))M_k(E_k,E)=Set(Sp_k k,X)^E=X(k)^E=Set(E,X(k)) and see that there is an adjunction

(() k()(k)):Sch kSet((-)_k\dashv (-)(k)):Sch_k\to Set

étale (group) scheme

An étale kk-scheme is defined to be a directed colimit of kk-spectra Sp kk Sp_k k^\prime of finite separable field-extensions k k^\prime of kk.

affine (group) scheme

An affine kk-scheme G:=Spec kAG:=Spec_k A is a representable object in k.Funk.Fun.

We obtain a group law G×GGG\times G\to G if

formal (group) scheme

local (=connected) group scheme

multiplicative group scheme

Definition and Remmark

A group scheme is called multiplicative group scheme if the following equivalent conditions are satisfied:

  1. G kk sG\otimes_k k_s is diagonalizable.

  2. G kKG\otimes_k K is diagonalizable for a field KM kK\in M_k.

  3. GG is the Cartier dual of an étale kk-group.

  4. D^(G)\hat D(G) is an étale kk-formal group.

  5. Gr k(G,α k)=0Gr_k(G,\alpha_k)=0

  6. (If p0)p\neq 0), V GV_G is an epimorphism

  7. (If p0)p\neq 0), V GV_G is an isomorphism

Remark

Let G constG_const dnote a constant group scheme, let EE be an étale group scheme. Then we have the following cartier duals:

  1. D(G const)D(G_const) is diagonalizable.

  2. D(E)D(E) is multiplicative

diagonalizable group scheme

unipotent group scheme

smooth formal group scheme

pp-divisible group scheme

Revision on July 19, 2012 at 18:27:29 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.