Spahn relation of certain classes of group schemes (Rev #1)

Decomposition of k-groups

One way the characterize certain classes of kk-groups is via exact sequences

0G exGG ex00\to G^{ex}\to G\to G_{ex}\to 0
kk-groupG exG^{ex}G exG_{ex}
formal kk-groupconnectedétalep.34
finite k-groupinfinitesimalétalesplits if kk is perfectp.35
affine k-groupmultiplicativeunipotentsplits if kk is perfectp.39
connected formal kk-groupG redG_{red} is smoothG/G redG/G_{red} is infinitesimalp. 43
Definition

(p. 39)

If kk is perfect any finite affine kk-group GG is in a unique way the product of four subgroups

G=a×b×c×dG=a\times b\times c\times d

where

  1. aFem ka\in Fem_k is a formal étale multiplicative kk group.

  2. bFeu kb\in Feu_k is a formal étale unipotent kk group.

  3. cFim kc\in Fim_k is a formal infinitesimal multiplicative kk group.

  4. dFem kd\in Fem_k is a infinitesimal unipotent kk group.

Duality of k-groups

DDD(G)D(G)
affine commutative kk-groupD^(G)\hat D(G) is affine commutative formal kk-groupp.27
finite commutative kk-groupfinite commutative kk-groupp.27
constant kk-groupdiagonalizable kk-groupp.36
étale k-groupmultiplicative k-groupp.37
multiplicative k-groupD^(G)\hat D(G) is étale formal kk-groupp.37
unipotent k-groupD^(G)\hat D(G) connected formal groupp.38
Fim kFim_kFeu kFeu_k

Examples of kk-groups

unipotentmultiplicativeétaleconnectedinfinitesimaldiagonalizable
unipotent
multiplicative
étale
connected
infinitesimal
diagonalizable

Revision on May 29, 2012 at 21:48:02 by Stephan Alexander Spahn?. See the history of this page for a list of all contributions to it.