Spahn
(n,1)-category in Ho TT
References
To explore the above suggestion, let’s start with the lowest-degree case: with ( 0 , 1 ) (0,1) -category types. How about the following definition?:
A ( 0 , 1 ) (0,1) -category type is
a type ⊢ X 0 : Type \vdash\; X_0 \colon Type
a dependent type x 0 , x 1 : X 0 ⊢ X 1 ( x 0 , x 1 ) : Type x_0,x_1 \colon X_0 \; \vdash \; X_1(x_0,x_1) \colon Type ;
we write
X ∂ Δ 2 ≔ ∑ x 0 , x 1 , x 2 : X 0 X 1 ( x 1 , x 2 ) × X 1 ( x 0 , x 2 ) × X 1 ( x 0 , x 1 ) ;
X^{\partial \Delta^2}
\coloneqq
\underset{x_0,x_1,x_2 \colon X_0}{\sum}
X_1(x_1,x_2) \times X_1(x_0,x_2) \times X_1(x_0,x_1)
\,;
a dependent type
( ( x 0 , x 1 , x 2 ) , ( f 0 , f 1 , f 2 ) ) : X ∂ Δ 2 ⊢ X 2 ( f 0 , f 1 , f 2 ) : Type ;
((x_0,x_1,x_2), (f_0, f_1, f_2)) \colon X^{\partial \Delta^2}
\;\vdash \;
X_2(f_0,f_1,f_2) \colon Type
\,;
such that
0-truncation – X 0 X_0 is 0-truncated /is an h-set
1-coskeletalness – the function
p 1 : ∑ ( x 0 , x 1 ) : X 0 × X 0 X 1 ( x 0 , x 1 ) → X 0 × X 0
p_1
\colon
\underset{(x_0,x_1) \colon X_0 \times X_0 }{\sum} X_1(x_0,x_1)
\to
X_0 \times X_0
is a 1-monomorphism ;
Segal condition – the function
( ( f 12 , f 02 , f 01 ) ↦ ( f 12 , f 01 ) ) : ∑ ( ( x 0 , x 1 , x 2 ) , ( f 12 , f 02 , f 01 ) ) : X ∂ Δ 2 X 2 → ∑ ( x 0 , x 1 , x 2 ) : X 0 X 1 ( x 0 , x 1 ) × X 1 ( x 1 , x 2 )
( (f_{12},f_{02},f_{01}) \mapsto (f_{12},f_{01}) )
\colon
\underset{((x_0,x_1,x_2),(f_{12},f_{02},f_{01})) \colon X^{\partial \Delta^2}}{\sum}
X_2
\to
\underset{ (x_0,x_1,x_2) \colon X_0 }{\sum}
X_1(x_0,x_1) \times X_1(x_1, x_2)
is an equivalence ;
unitality – the function
p 1 : ∑ x : X 0 X 1 ( x , x ) → X 0
p_1
\colon
\underset{x \colon X_0}{\sum} X_1(x,x)
\to
X_0
is an equivalence . To explore the above suggestion, let’s start with the lowest-degree case: with (0,1)-category types. How about the following definition?:
And then the next step in exploring #4 :
A ( 1 , 1 ) (1,1) -category type is
a type ⊢ X 0 : Type \vdash\; X_0 \colon Type
a dependent type x 0 , x 1 : X 0 ⊢ X 1 ( x 0 , x 1 ) : Type x_0,x_1 \colon X_0 \; \vdash \; X_1(x_0,x_1) \colon Type ;
we write
X ∂ Δ 2 ≔ ∑ x 0 , x 1 , x 2 : X 0 X 1 ( x 1 , x 2 ) × X 1 ( x 0 , x 2 ) × X 1 ( x 0 , x 1 ) ;
X^{\partial \Delta^2}
\coloneqq
\underset{x_0,x_1,x_2 \colon X_0}{\sum}
X_1(x_1,x_2) \times X_1(x_0,x_2) \times X_1(x_0,x_1)
\,;
a dependent type
( ( x 0 , x 1 , x 2 ) , ( f 12 , f 02 , f 01 ) ) : X ∂ Δ 2 ⊢ X 2 ( f 12 , f 02 , f 01 ) : Type ;
((x_0,x_1,x_2), (f_{12}, f_{02}, f_{01})) \colon X^{\partial \Delta^2}
\;\vdash \;
X_2(f_{12}, f_{02}, f_{01}) \colon Type
\,;
we write
X ∂ Δ 3 ≔ ∑ ( x 0 , x 1 , x 2 , x 3 , x 4 : X 1 ) ∑ f i j : X 1 ( x i , x j ) X 2 ( f 12 , f 02 , f 01 ) × X 2 ( f 23 , f 13 , f 12 ) × ⋯ ,
X^{\partial \Delta^3}
\coloneqq
\underset{(x_0,x_1,x_2,x_3,x_4 \colon X_1) }{\sum}
\underset{ f_{i j} \colon X_1(x_i, x_j)}{\sum}
X_2(f_{12},f_{02},f_{01})
\times
X_2(f_{23}, f_{13}, f_{12})
\times
\cdots
\,,
a dependent type
( σ 123 , σ 023 , σ 013 , σ 012 ) : X ∂ Δ 3 ⊢ X 3 ( σ 123 , σ 023 , σ 013 , σ 012 ) : Type
(\sigma_{123}, \sigma_{023}, \sigma_{013}, \sigma_{012}) \colon X^{\partial \Delta^3}
\;\vdash\;
X_3(\sigma_{123}, \sigma_{023}, \sigma_{013}, \sigma_{012})
\colon
Type
such that
1-truncation – X 1 X_1 is 1-truncated /is an h-groupoid
2-coskeletalness – the function
p 1 : ∑ ( f 12 , f 02 , f 01 ) : X ∂ Δ 2 X 2 ( f 12 , f 02 , f 01 ) → X ∂ Δ 2
p_1
\colon
\underset{(f_{12},f_{02}, f_{01}) \colon X^{\partial \Delta^2}}{\sum}
X_2(f_{12},f_{02}, f_{01})
\to
X^{\partial \Delta^2}
is a 1-monomorphism ;
Segal condition – the functions
( ( f 12 , f 02 , f 01 ) ↦ ( f 12 , f 01 ) ) : ∑ ( ( x 0 , x 1 , x 2 ) , ( f 0 , f 1 , f 2 ) ) : X ∂ Δ 2 X 2 → ∑ ( x 0 , x 1 , x 2 ) : X 0 X 1 ( x 0 , x 1 ) × X 1 ( x 1 , x 2 )
( (f_{12},f_{02},f_{01}) \mapsto (f_{12},f_{01}) )
\colon
\underset{((x_0,x_1,x_2),(f_0,f_1,f_2)) \colon X^{\partial \Delta^2}}{\sum}
X_2
\to
\underset{ (x_0,x_1,x_2) \colon X_0 }{\sum}
X_1(x_0,x_1) \times X_1(x_1, x_2)
and
( ( f i j , σ i j k ) ↦ ( f 01 , f 12 , f 23 ) ) : ∑ f i j : X 1 ( x i , x j ) ∑ σ i 0 i 1 i 2 : X 2 ( f i 1 i 2 , f i 0 i 2 , f i 0 i 1 ) X 3 ( σ ⋯ , ⋯ ) → ∑ ( x 0 , x 1 , x 2 , x 3 ) : X 0 X 1 ( x 0 , x 1 ) × X 1 ( x 1 , x 2 ) × X 1 ( x 2 , x 3 )
( (f_{i j}, \sigma_{i j k}) \mapsto (f_{01}, f_{12}, f_{23}) )
\colon
\underset{f_{i j} \colon X_1(x_i,x_j)}{\sum}
\underset{\sigma_{i_0 i_1 i_2} \colon X_2(f_{i_1 i_2}, f_{i_0 i_2}, f_{i_0 i_1})}{\sum}
X_3( \sigma_{\cdots}, \cdots )
\to
\underset{(x_0,x_1,x_2,x_3) \colon X_0}{\sum}
X_1(x_0,x_1)
\times
X_1(x_1,x_2)
\times
X_1(x_2,x_3)
are equivalences ;
unitality – the function
( ( ( x 0 , x 1 ) , f ) ↦ x 0 ) : ∑ x 0 , x 1 : X 0 X 1 ( x 0 , x 1 ) ≃ → X 0
(((x_0,x_1),f) \mapsto x_0)
\colon
\underset{x_0,x_1 \colon X_0}{\sum}
X_1(x_0,x_1)_{\simeq}
\to
X_0
is an equivalence .
References
nforum, semi segal space, web
Created on December 1, 2012 at 05:12:56.
See the history of this page for a list of all contributions to it.