Witt polynomial (changes)

Showing changes from revision #1 to #2:
Added | ~~Removed~~ | ~~Chan~~ged

category: combinatorics

combinatorics
Let $p$ be a prime number, let $n\in \mathbb{N}$. Then the *$n$-th $p$-adic Witt polynomial* is defined by

$w_n(X):=\sum_{d|n}d X_d^{n/d}$

This formula comes out of consideration of addition of Teichmüller representatives?, a multiplicative section of the natural projection $A\to k$ of a discrete valuation ring to its residue field?. This section is unique if $k$ is perfect.

Witt polynomials are one way to define Witt vectors.

- Hazewinkel, Witt vectors.

Last revised on August 9, 2012 at 16:19:55. See the history of this page for a list of all contributions to it.