codensity monad (changes)

Showing changes from revision #1 to #2:
Added | ~~Removed~~ | ~~Chan~~ged

It is not necessary for a functor to have an adjoint to canonically associate a monad to it. The *codensity monad of a functor $F$* (if it exists) is the right Kan extension of $F$ along itself.

- Tom Leinster,
- where do monads come from?, post to the
~~nacfé,~~n-Café,web - codensity and the ultrafilter monad, arXiv:1209.3606

- where do monads come from?, post to the

Last revised on October 19, 2018 at 08:32:33. See the history of this page for a list of all contributions to it.