Spahn mates (changes)

Showing changes from revision #0 to #1: Added | Removed | Changed

K(a,b)( lx,y l)K(b,a)(x r, ry) K(a,b')(\diamond_l x,y \Box_l) \cong K(b,a')(x \Box_r,\diamond_r y)
a x a l λ l b y bb r a x a 1 a 1 ϵ l λ l η 1 b 1 b y b r a \array{ a & \overset{x}{\to} & a' \\ \mathllap{\Box_l} \downarrow & \mathllap{\lambda} \Downarrow & \downarrow \mathrlap{\diamond_l} \\ b & \underset{y}{\to} & b' } \;\;\;\;\; \mapsto \;\;\;\;\; \array{ b & \overset{\Box_r}{\to} & a & \overset{x}{\to} & a' & \overset{1}{\to} & a' \\ \mathllap{1} \downarrow & \mathllap{\epsilon} \Downarrow & \mathllap{\Box_l} \downarrow & \mathllap{\lambda} \Downarrow & \downarrow \mathrlap{\diamond_l} & \Downarrow \mathrlap{\eta'} & \downarrow \mathrlap{1} \\ b & \underset{1}{\to} & b & \underset{y}{\to} & b' & \underset{\diamond_r}{\to} & a' }

and

b y b r r a x aa l b y b 1 b 1 η r r ϵ 1 a 1 a x a l b \array{ b & \overset{y}{\to} & b' \\ \mathllap{\Box_r} \downarrow & \Uparrow & \downarrow \mathrlap{\diamond_r} \\ a & \underset{x}{\to} & a' } \;\;\;\;\; \mapsto \;\;\;\;\; \array{ a & \overset{\Box_l}{\to} & b & \overset{y}{\to} & b' & \overset{1}{\to} & b' \\ \mathllap{1} \downarrow & \mathllap{\eta} \Uparrow &\downarrow & \mathllap{\Box_r} \Uparrow & \downarrow \mathrlap{\diamond_r} & \Uparrow \mathrlap{\epsilon'} & \downarrow \mathrlap{1} \\ a & \underset{1}{\to} & a & \underset{x}{\to} & a' & \underset{\diamond_l}{\to} & b' }

That this is a bijection follows from the triangle identities?. The 2-cells λ\lambda and r\Box_r are called mates (or sometimes conjugates) with respect to the adjunctions l r\Box_l \dashv \Box_r and l r\diamond_l \dashv \diamond_r (and to the 1-cells xx and yy).

Properties

Strict 2-functors preserve adjurnctions and pasting diagrams, so that i\Box_l F:KJF \colon K \to J is a 2-\Box_l\Box_rnctor and i\Box_l λ\lambda and r\Box_r are mates wrt l r\Box_l \dashv \Box_r and l r\diamond_l \dashv \diamond_r in KK, then FλF \lambda and F rF \Box_r are mates wrt F lF rF \Box_l \dashv F \Box_r and F lF rF \diamond_l \dashv F \diamond_r in JJ.

I\Box_l α:FG\alpha \colon F \Rightarrow G is a 2-nat\Box_rral trans\Box_lormation?, then the nat\Box_rrality identities α bF l=G lα a\alpha_b \circ F \Box_l = G \Box_l \circ \alpha_a and α aF r=G rα b\alpha_a \circ F \Box_r = G \Box_r \circ \alpha_b are mates wrt F lF rF \Box_l \dashv F \Box_r and G lG rG \Box_l \dashv G \Box_r.

Created on December 23, 2012 at 22:41:02. See the history of this page for a list of all contributions to it.