Spahn
mates
Properties
K ( a , b ′ ) ( ⋄ l x , y □ l ) ≅ K ( b , a ′ ) ( x □ r , ⋄ r y ) K(a,b')(\diamond_l x,y \Box_l) \cong K(b,a')(x \Box_r,\diamond_r y) a → x a ′ □ l ↓ λ ⇓ ↓ ⋄ l b → y b ′ ↦ b → □ r a → x a ′ → 1 a ′ 1 ↓ ϵ ⇓ □ l ↓ λ ⇓ ↓ ⋄ l ⇓ η ′ ↓ 1 b → 1 b → y b ′ → ⋄ r a ′
\array{
a & \overset{x}{\to} & a'
\\
\mathllap{\Box_l} \downarrow & \mathllap{\lambda} \Downarrow & \downarrow \mathrlap{\diamond_l}
\\
b & \underset{y}{\to} & b'
}
\;\;\;\;\;
\mapsto
\;\;\;\;\;
\array{
b & \overset{\Box_r}{\to} & a & \overset{x}{\to}
& a' & \overset{1}{\to} & a'
\\
\mathllap{1} \downarrow & \mathllap{\epsilon} \Downarrow & \mathllap{\Box_l} \downarrow &
\mathllap{\lambda} \Downarrow & \downarrow \mathrlap{\diamond_l} & \Downarrow \mathrlap{\eta'}
& \downarrow \mathrlap{1} \\
b & \underset{1}{\to} & b & \underset{y}{\to}
& b' & \underset{\diamond_r}{\to} & a'
}
and
b → y b ′ □ r ↓ ⇑ ↓ ⋄ r a → x a ′ ↦ a → □ l b → y b ′ → 1 b ′ 1 ↓ η ⇑ ↓ □ r ⇑ ↓ ⋄ r ⇑ ϵ ′ ↓ 1 a → 1 a → x a ′ → ⋄ l b ′
\array{
b & \overset{y}{\to} & b' \\
\mathllap{\Box_r} \downarrow & \Uparrow & \downarrow \mathrlap{\diamond_r} \\
a & \underset{x}{\to} & a'
}
\;\;\;\;\;
\mapsto
\;\;\;\;\;
\array{
a & \overset{\Box_l}{\to} & b & \overset{y}{\to} & b'
& \overset{1}{\to} & b' \\
\mathllap{1} \downarrow & \mathllap{\eta} \Uparrow &\downarrow
& \mathllap{\Box_r} \Uparrow & \downarrow \mathrlap{\diamond_r} & \Uparrow \mathrlap{\epsilon'} & \downarrow \mathrlap{1} \\
a & \underset{1}{\to} & a & \underset{x}{\to} & a' & \underset{\diamond_l}{\to} & b'
}
That this is a bijection follows from the triangle identities? . The 2-cells λ \lambda and □ r \Box_r are called mates (or sometimes conjugates ) with respect to the adjunctions □ l ⊣ □ r \Box_l \dashv \Box_r and ⋄ l ⊣ ⋄ r \diamond_l \dashv \diamond_r (and to the 1-cells x x and y y ).
Properties
Strict 2-functors preserve adjurnctions and pasting diagrams, so that i\Box_l F : K → J F \colon K \to J is a 2-\Box_l\Box_rnctor and i\Box_l λ \lambda and □ r \Box_r are mates wrt □ l ⊣ □ r \Box_l \dashv \Box_r and ⋄ l ⊣ ⋄ r \diamond_l \dashv \diamond_r in K K , then F λ F \lambda and F □ r F \Box_r are mates wrt F □ l ⊣ F □ r F \Box_l \dashv F \Box_r and F ⋄ l ⊣ F ⋄ r F \diamond_l \dashv F \diamond_r in J J .
I\Box_l α : F ⇒ G \alpha \colon F \Rightarrow G is a 2-nat\Box_rral trans\Box_lormation? , then the nat\Box_rrality identities α b ∘ F □ l = G □ l ∘ α a \alpha_b \circ F \Box_l = G \Box_l \circ \alpha_a and α a ∘ F □ r = G □ r ∘ α b \alpha_a \circ F \Box_r = G \Box_r \circ \alpha_b are mates wrt F □ l ⊣ F □ r F \Box_l \dashv F \Box_r and G □ l ⊣ G □ r G \Box_l \dashv G \Box_r .
Created on December 23, 2012 at 22:41:02.
See the history of this page for a list of all contributions to it.