nLab
current algebra

Context

\infty-Lie theory

∞-Lie theory

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

\infty-Wess-Zumino-Witten theory

Contents

Idea

A current algebra of a Lie algebra 𝔤\mathfrak{g} is a vertex operator algebra describing (one chiral piece of) a string propagating on a Lie group corresponding to 𝔤\mathfrak{g}.

This appears in the WZW-model 2d sigma-model CFT on GG.

References

  • Sam Treiman, Roman Jackiw, David Gross, Lectures on current algebra and its applications , Princeton University Press. (1972)

  • Steven Weinberg, Current Algebra and Gauge Theories. I Phys. Rev. D 8, 605–625 (1973)

  • Herbert Pietschmann, On the Early History of Current Algebra (arXiv:1101.2748)

Created on October 21, 2011 19:05:08 by Urs Schreiber (131.211.235.125)