division algebra and supersymmetry



\infty-Lie theory

∞-Lie theory


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids




\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras



There is a close relationship between

This is based on the fact that in certain dimensions, spin group representations are naturally identified with a 𝕂 n\mathbb{K}^n, for 𝕂\mathbb{K} one of the normed division algebras, see at spin group The exceptional isomorphisms.

Lorentzian spacetime dimensionspin groupnormed division algebrabrane scan entry
3=2+13 = 2+1Spin(2,1)SL(2,)Spin(2,1) \simeq SL(2,\mathbb{R})\mathbb{R} the real numbers
4=3+14 = 3+1Spin(3,1)SL(2,)Spin(3,1) \simeq SL(2, \mathbb{C})\mathbb{C} the complex numbers
6=5+16 = 5+1Spin(5,1)SL(2,)Spin(5,1) \simeq SL(2, \mathbb{H})\mathbb{H} the quaternionslittle string
10=9+110 = 9+1Spin(9,1)somesenseSL(2,𝕆)Spin(9,1) \underset{some\,sense}{\simeq} SL(2,\mathbb{O})𝕆\mathbb{O} the octonionsheterotic/type II string


The structure of the normed division algebras governs the existence of the brane scan and the super-∞-Lie algebras such as the supergravity Lie 3-algebra. By the D'Auria-Fre formulation of supergravity the ∞-Lie algebra valued forms with values in these constitute the field content of (11-dimensional) supergravity.


The relation was apparently first made explicit in

  • Taichiro Kugo, Paul Townsend, Supersymmetry and the division algebras, Nuclear Physics B, Volume 221, Issue 2, p. 357-380. (spires, pdf)

A pedagogical review is in

Discussion with an emphasis on the application to super Yang-Mills theory is in

  • A. Anastasiou, L. Borsten, Mike Duff, L. J. Hughes, S. Nagy, Super Yang-Mills, division algebras and triality (arXiv:1309.0546)

The relationship in string theory via octonion algebra between the NRS spinning string and the Green-Schwarz superstring sigma-models is discussed in

  • Rafael I. Nepomechie, Nonabelian bosonization, triality, and superstring theory Physics Letters B Volume 178, Issues 2-3, 2 October 1986, Pages 207-210

  • I. Bars, D. Nemschansky and S. Yankielowicz, SLACPub- 3758.

  • H. Tachibana, K. Imeda, Octonions, superstrings and ten-dimensional spinors , Il nuovo cimento, Vol 104 B N.1

The relation of the division algebras to ordinary (Lie algebraic) extensions of the super Poincare Lie algebra is discussed in

  • Jerzy Lukierski, Francesco Toppan, Generalized Space-time Supersymmetries, Division Algebras and Octonionic M-theory (pdf)

  • A. Anastasiou, L. Borsten, Mike Duff, L. J. Hughes, S. Nagy, An octonionic formulation of the M-theory algebra (arXiv:1402.4649)

Normed division algebras are used to describe the construction of Lie 2-algebra extensions of the super Poincare Lie algebra in

Revised on March 16, 2015 19:27:18 by Urs Schreiber (