nLab module over an algebra over an (∞,1)-operad

Redirected from "∞-module over an ∞-algebra over an (∞,1)-operad".
Contents

(under construction)

Contents

Idea

(…)

As stabilization

Let 𝒪 \mathcal{O}^{\otimes} be a reduced coherent (∞,1)-operad and 𝒞 \mathcal{C}^{\otimes} be a stable 𝒪\mathcal{O}-monoidal \infty-category (that is, an 𝒪\mathcal{O}-algebra in the \infty-category of stable \infty-categories and exact functors). Then, Theorem 7.3.4.13 of (Lurie) presents 𝒪\mathcal{O}-AA-modules as stabilization of 𝒪\mathcal{O}-algebras over AA.

Theorem

The stabilization Sp(Alg 𝒪(𝒞) /A)\mathrm{Sp}(\Alg_{\mathcal{O}}(\mathcal{C})_{/A}) is canonically equivalent to Mod A 𝒪\mathrm{Mod}_A^{\mathcal{O}}.

The associated suspension-loops adjunction is an 𝒪\mathcal{O}-algebra version of the adjunction between cotangent complexes and split square-zero extensions. To see the theorem, begin by noting that the we may reduce to the case of the 𝒪\mathcal{O}-monoidal unit A=1\mathrm{A} = 1 by expressing 𝒪\mathcal{O}-AA-algebras as 𝒪\mathcal{O}-algebras under AA:

Sp(Alg 𝒪(𝒞) /A) Sp((Alg 𝒪(𝒞) /A) *) Sp((Alg 𝒪(𝒞) A//A)) Sp((Alg 𝒪 Aug(Mod A 𝒪𝒞))). \begin{split} \mathrm{Sp}(\mathrm{Alg}_{\mathcal{O}}(\mathcal{C})_{/A}) &\simeq \mathrm{Sp}((\mathrm{Alg}_{\mathcal{O}}(\mathcal{C})_{/A})_*) \\ &\simeq \mathrm{Sp}((\mathrm{Alg}_{\mathcal{O}}(\mathcal{C})_{A//A})) \\ &\simeq \mathrm{Sp}((\mathrm{Alg}^{\mathrm{Aug}}_{\mathcal{O}}(\mathrm{Mod}_A^{\mathcal{O}}\mathcal{C}))). \end{split}

To see this in the unital case, taking Kernels of the augmentation yields a monadic “augmentation ideal” functor

I:Alg 𝒪 aug(𝒞)𝒞 I\colon \mathrm{Alg}_{\mathcal{O}}^{\mathrm{aug}}(\mathcal{C}) \rightarrow \mathcal{C}

whose associated monad corresponds with the positive-arity 𝒪\mathcal{O}-symmetric powers:

T I(X) n>0(𝒪(n)×X n) hΣ n. T_I(X) \simeq \bigoplus_{n > 0} \left(\mathcal{O}(n) \times X^{\otimes n} \right)_{h\Sigma_n}.

By stability of 𝒞\mathcal{C}, the augmentation ideal factors through a monadic functor I:Sp(Alg aug(𝒞)𝒞\partial I\colon \mathrm{Sp}(\mathrm{Alg}^{\mathrm{aug}}(\mathcal{C}) \rightarrow \mathcal{C} which turns out to be the first Goodwillie derivative

I(X)colim nΩ nI(Σ nX). \partial I(X) \simeq \colim_{n} \Omega^n I(\Sigma^n X).

Intuitively, when n2n \geq 2, the X nX^{\otimes n} term in the monad T I(X)T_{\partial I}(X) is a colimit of spaces becoming arbitrarily highly connected, so it is contractible, demonstrating that T I(X)T_{\partial I}(X) is the identity monad.

References

Section 3.3.3 of

Last revised on January 4, 2025 at 16:26:48. See the history of this page for a list of all contributions to it.