nLab locally monoidal (infinity,1)-operad

Redirected from "coherent (∞,1)-operad".
Contents

Contents

Idea

A locally monoidal (,1)(\infty,1)-operad (called a coherent (,1)(\infty,1)-operad in (Lurie)) is an (∞,1)-operad 𝒪\mathcal{O} whose modules over 𝒪\mathcal{O}-algebras come equipped with a well behaved tensor product

Definition

Given π 𝒪:𝒪 N(Fin *)\pi_{\mathcal{O}}\colon \mathcal{O}^{\otimes} \rightarrow N(\mathrm{Fin}_*) a unital (∞,1)-operad, write 𝒪 act 𝒪 \mathcal{O}^{\otimes}_{\mathrm{act}} \subset \mathcal{O}^{\otimes} be the wide subcategory of active morphisms. Given a composable chain of active morphisms X 0f 1f nX_0 \xrightarrow{f_1} \cdots \xrightarrow{f_n} with corresponding nn-simplex σ:Δ n𝒪 act \sigma\colon \Delta^n \rightarrow \mathcal{O}^{\otimes}_{\mathrm{act}} and a downward-closed subset S[n]S \subset [n], the (∞,1)?-category of extensions of σ\sigma on SS is the full subcategroy

Ext(σ,S)Fun(Δ n,𝒪 ) σ/ \mathrm{Ext}(\sigma,S) \subset \mathrm{Fun}(\Delta^n, \mathcal{O}^{\otimes})_{\sigma/}

spanned by diagrams satisfying the following properties:

a. If iSi \notin S, g ig_i is an equivalence

a. If iSi \in S, then g ig_i is semi-inert over an inclusion n in i+1\langle n_i \rangle \hookrightarrow \langle n_i + 1 \rangle which omits a single value a ia_i

a. If 1iS1 \le i \in S, then π 𝒪(f i)\pi_{\mathcal{O}}(f'_i) carries a i1a_{i-1} to a ia_i

a. each f if'_i is active.

If the \infty-category of colors 𝒪\mathcal{O} is an ∞-groupoid, then each Ext(σ,S)\mathrm{Ext}(\sigma,S) is itself an ∞-groupoid, i.e. a space. A locally monoidal (∞,1)-operad can loosely be defined as one whose extension spaces satisfy excision under composition.

Definition

An (∞,1)-operad 𝒪 \mathcal{O}^\otimes is locally monoidal if

  1. it is unital;

  2. the underlying (∞,1)-category 𝒪\mathcal{O} is an ∞-groupoid; and

  3. given a composable pair of morphisms XfYgZX \xrightarrow{f} Y \xrightarrow{g} Z with corresponding 33-simplex σ\sigma, the associated diagram of spaces

is a (homotopy) pushout square.

This is (Lurie, def. 3.3.1.9).

The exponentiability criterion

Let Ar sInt(𝒪 )Fun(Δ 1,𝒪 )\mathrm{Ar}^{\mathrm{sInt}}(\mathcal{O}^{\otimes}) \subset \mathrm{Fun}(\Delta^1, \mathcal{O}^{\otimes}) be the full subcategory spanned by semi-inert morphisms. The following is (Lurie, thm. 3.3.2.2).

Theorem

Suppose 𝒪 \mathcal{O}^{\otimes} is a unital (∞,1)-operad whose \infty-category of colors 𝒪\mathcal{O} is an ∞-groupoid. Then, 𝒪 \mathcal{O}^{\otimes} is locally monoidal if and only if the source map s:Ar sInt(𝒪 )𝒪 s\colon \mathrm{Ar}^{\mathrm{sInt}}(\mathcal{O}^{\otimes}) \rightarrow \mathcal{O}^{\otimes} is an exponentiable fibration.

Examples

Locally monoidal (,1)(\infty,1)-operads include

References

Section 3.3.1 of

Last revised on January 4, 2025 at 16:00:51. See the history of this page for a list of all contributions to it.