On logarithmic CFT:
On fractional-level WZW models as logarithmic CFT:
David Ridout, : A Case Study, Nucl. Phys. B 814 (2009) 485-521 arXiv:0810.3532, doi:10.1016/j.nuclphysb.2009.01.008
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models I, Nuclear Physics B 865 1 (2012) 83-114 arXiv:1205.6513, doi:10.1016/j.nuclphysb.2012.07.018
Thomas Creutzig, David Ridout, Modular Data and Verlinde Formulae for Fractional Level WZW Models II, Nuclear Physics B 875 2 (2013) 423-458 arXiv:1306.4388, doi:10.1016/j.nuclphysb.2013.07.008
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules I: rank 1 cases, Commun. Math. Phys. 368 (2019) 627–663 arXiv:1803.01989, doi:10.1007/s00220-019-03305-x
Kazuya Kawasetsu, David Ridout, Relaxed highest-weight modules II: classifications for affine vertex algebras, Communications in Contemporary Mathematics, 24 05 (2022) 2150037 arXiv:1906.02935, doi:10.1142/S0219199721500371
Reviewed in:
David Ridout, Fractional Level WZW Models as Logarithmic CFTs (2010) pdf, pdf
David Ridout, Fractional-level WZW models (2020) pdf, pdf
On the Verlinde formula for logarithmic CFTs:
Last revised on June 9, 2022 at 20:46:03. See the history of this page for a list of all contributions to it.