A generalization of Waldhausen K-theory to dualizable dg-categories and dualizable stable ∞-categories.
For compactly generated inputs, recovers the Waldhausen K-theory of the full subcategory of compact objects.
The formalism is applicable to $\lambda$-presentable stable ∞-categories, where $\lambda$ can be uncountable (for example, various categories of sheaves, or categories occurring in functional analysis).
Alexander Efimov, On the K-theory of large triangulated categories, ICM 2022, https://www.youtube.com/watch?v=RUDeLo9JTro
Marc Hoyois, K-theory of dualizable categories (after A. Efimov), https://hoyois.app.uni-regensburg.de/papers/efimov.pdf.
Last revised on March 2, 2023 at 09:39:49. See the history of this page for a list of all contributions to it.