nLab Sandbox

The Pin(2)-group is

S()jS(). S(\mathbb{C}) \cup \mathbf{j} S(\mathbb{C}) \,.

Identify the plane with the linear span of j\mathbf{j} and k\mathbf{k}

2j,k im. \mathbb{R}^2 \;\simeq\; \langle \mathbf{j}, \mathbf{k}\rangle \;\subset\; \mathbb{H}_{\mathrm{im}} \,.

Then an element

R αAd cos(α/2)+sin(α/2)iS()S() R_{\alpha} \;\coloneqq\; Ad_{ \cos(\alpha/2) + \sin(\alpha/2) \mathbf{i} } \;\in\; S(\mathbb{C}) \subset S(\mathbb{H})

acts on 2\mathbb{R}^2 as

R α(j) (cos(α/2)+sin(α/2)i)j(cos(α/2)sin(α/2)i) = (cos(α/2) 2sin(α/2) 2)j+(2sin(α/2)cos(α/2))k = cos(α)j+sin(α)k \begin{array}{rcl} R_\alpha(\mathbf{j}) &\equiv& \big( \cos(\alpha/2) + \sin(\alpha/2)\mathbf{i} \big) \, \mathbf{j} \, \big( \cos(\alpha/2) - \sin(\alpha/2)\mathbf{i} \big) \\ &=& \big( \cos(\alpha/2)^2 - \sin(\alpha/2)^2 \big) \, \mathbf{j} + \big( 2 \sin(\alpha/2) \cos(\alpha/2) \big) \, \mathbf{k} \\ &=& \cos(\alpha) \, \mathbf{j} + \sin(\alpha) \, \mathbf{k} \end{array}

(in the last line we used the sum-of-angles trigonometric identities)

while the element I yAd jI_y \coloneqq Ad_{\mathbf{j}} acts as

I yj=jj(j)=j I_y \mathbf{j} \;=\; \mathbf{j} \, \mathbf{j} \, (- \mathbf{j}) \;=\; \mathbf{j}
I yk=jk(j)=k I_y \mathbf{k} \;=\; \mathbf{j} \, \mathbf{k} \, (- \mathbf{j}) \;=\; - \mathbf{k}

Last revised on June 27, 2025 at 10:29:17. See the history of this page for a list of all contributions to it.