nLab
Sandbox

S ψ in 1,,ψ in n in,ψ out 1,,ψ out n out=gλ gmodulispaceof(n in,n out)puncturedsuperRiemannsurfacesΣ g n in,n outofgenusg(SCFTCorrelatoroverΣofstatesψ in 1,,ψ in n in,ψ out 1,,ψ out n out) S_{\psi^1_{in}, \cdots, \psi^{n_{in}}_{in}, \psi^1_{out}, \cdots, \psi^{n_{out}}_{out}} \;=\; \underset{g \in \mathbb{N}}{\sum} \lambda^g \underset{ {moduli \; space \; of} \atop {{(n_{in},n_{out}) punctured} \atop {{super\; Riemann \; surfaces} \atop {{\Sigma^{n_{in}, n_{out}}_g} \atop {of\; genus\; g}}}} }{ \int } \left( SCFT \; Correlator \; over \; \Sigma \; of \; states\; {\psi^1_{in}, \cdots, \psi^{n_{in}}_{in}, \psi^1_{out}, \cdots, \psi^{n_{out}}_{out}} \right)

stringy S-matrix from Polchinski's textbook

stringy S-matrix for the supersymmetric case from Polchinski's textbook

Revised on September 20, 2016 12:29:47 by Urs Schreiber (195.37.209.183)