EEE E \;\coloneqq\; \sqrt{ \vec E \cdot \vec E }
(12(EEBB)) 2+(EB) 2+12(EEBB) \mathcal{E} \;\coloneqq\; \sqrt{ \sqrt{ \left( \tfrac{1}{2} \big( \vec E \cdot \vec E - \vec B \cdot \vec B \big) \right)^2 + \big( \vec E \cdot \vec B \big)^2 } + \tfrac{1}{2} \big( \vec E \cdot \vec E - \vec B \cdot \vec B \big) }
={EEBB | EB=0 E | EB0Lorentztransformation(E,B)(E,B)EB \mathcal{E} \; = \; \left\{ \array{ \sqrt{ \vec E \cdot \vec E - \vec B \cdot \vec B } & \vert & \mathrlap{ \vec E \cdot \vec B = 0 } \\ E &\vert& \mathrlap{ \vec E \cdot \vec B \neq 0 \;\; \Rightarrow \underset{ { Lorentz \atop transformation } \atop { (\vec E, \vec B) \mapsto (\vec E', \vec B') } }{\exists} \vec E' \parallel \vec B' } } \right.


Last revised on March 29, 2020 at 09:11:19. See the history of this page for a list of all contributions to it.