nLab Sandbox

This nLab page is for developing preliminary notes or making typographical experiments, etc. It may be edited by anybody, anytime. But you don’t necessarily need to delete other people’s ongoing notes here in order to add your own. In any case, overwritten edits may always be recovered from the page history.



equivariant cell structure on 2-tori – section

The following shows for the symmorphic 2D crystallographic groups (wallpaper groups) 2GIso(2) \mathbb{Z}^2 \rtimes G \subset Iso(2) the G G -CW complex structure on the resulting tori T 2 2/ 2T^2 \coloneqq \mathbb{R}^2/\mathbb{Z}^2.

The point groups GG arising are the cyclic groups /1=\mathbb{Z}_{/1}= 1 1 , /2 \mathbb{Z}_{/2} , /3 \mathbb{Z}_{/3} , /4 \mathbb{Z}_{/4} , /6\mathbb{Z}_{/6} and the dihedral groups Dih 1Dih_1, Dih 2Dih_2, Dih 3Dih_3, Dih 4Dih_4, and Dih 6Dih_6 (making 10 distinct point groups GG, but the first three of the latter come with two inequivalent actions each).

p1TorusCellStructure-20250722.png

pmTorusCellStructure-20250722.png

cmTorusCellStructure-20250722.png

p2TorusCellStructure-20250722.png

pmmTorusCellStructure-20250726.png

cmmTorusCellStructure-20250722.png

p3TorusCellStructure-20250722.png

p31mTorusCellStructure-20250722.png

p3m1TorusCellStructure-20250722.png

p4TorusCellStructure-20250722.png

p4mTorusCellStructure-20250722.png

p4gTorusCellStructure-20250802.png?

p6TorusCellStructure-20250722.png

p6mTorusCellStructure-20250722.png

pgTorusCellStructure-20250726b.png

pmgTorusCellStructure-20250730.png

pggTorusCellStructure-20250731.png

Last revised on August 2, 2025 at 17:04:07. See the history of this page for a list of all contributions to it.