nLab Sandbox

This nLab page is for developing preliminary notes or making typographical experiments, etc. It may be edited by anybody, anytime. But you don’t necessarily need to delete other people’s ongoing notes here in order to add your own. In any case, overwritten edits may always be recovered from the page history.



For GG a group and

HιG H \xhookrightarrow{\iota} G

a subgroup, write

(1)ι *:GRep HRep \iota^\ast \;\colon\; G Rep_{\mathbb{C}} \xrightarrow{\;} H Rep_{\mathbb{C}}

for the functor of restricted representations.

Proposition 0.1. The functor ι *\iota^\ast (1) has a right adjoint ι *:HRep GRep \iota_\ast \colon H Rep_{\mathbb{C}} \xrightarrow{\;} G Rep_{\mathbb{C}} given by

VHRep ι *VHom H([H],V), V \in H Rep_{\mathbb{C}} \;\;\;\;\;\; \vdash \;\;\;\;\;\; \iota_{\ast} V \;\coloneqq\; Hom_H\big( \mathbb{C}[H] ,\, V \big) \,,

where on the right we have the vector space of HH-equivariant linear maps equipped with the GG-group action given by

f:[H]V gG}gff(g). \left. \begin{array}{l} f \,\colon\, \mathbb{C}[H] \xrightarrow{\;} V \\ g \,\in\, G \end{array} \right\} \;\;\;\;\;\; \vdash \;\;\;\;\;\; g \cdot f \,\coloneqq\, f(- \cdot g) \,.

Proof. We claim that the hom-isomorphism is given by evaluation at the neutral element eG\mathrm{e} \in G:

VHRep WGRep}WfHom H([H],V)ι *Vι *Wf()(e)V \left. \begin{array}{l} V \,\in\, H Rep \\ W \,\in\, G Rep \end{array} \right\} \;\;\;\;\;\;\;\; \vdash \;\;\;\;\;\;\;\; \frac{ W \xrightarrow{\;\;\;\; f \;\;\;\;} \overset{\iota_\ast V}{ \overbrace{ Hom_{H}\big( \mathbb{C}[H] ,\, V \big) } } }{ \iota^\ast W \xrightarrow{\;\; f(-)(\mathrm{e}) \;\;} V }

To see this, just observe that

fHom G(W,Hom H([H],V)) hH}f(h)(e)=(hf())(e)=f()(eh)=f()(h), \left. \begin{array}{l} f \,\in\, Hom_G\Big( W ,\, Hom_H\big( \mathbb{C}[H] ,\, V \big) \Big) \\ h \,\in\, H \end{array} \right\} \;\;\;\;\;\;\; \vdash \;\;\;\;\;\;\; f(h \cdot -)(\mathrm{e}) \;=\; \big( h \cdot f(-)\big)(\mathrm{e}) \;=\; f(-)(\mathrm{e} \cdot h) \;=\; f(-)(h) \,,

where the first equality is the GG-equivariance of ff, and the second is the HH-equivariance of f()f(-). This shows that f()(e)f(-)(\mathrm{e}) is HH-equivariant and that it uniquely determines ff.

  ▮

On electrodynamics via field strengths instead of gauge potentials:

  • Joshua Newey, John Terning, Christopher B. Verhaaren: Geometrizing the Anomaly [arXiv:2504.16998]

Last revised on April 29, 2025 at 18:07:36. See the history of this page for a list of all contributions to it.