On topological quantum computation with anyons:
Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, Sankar Das Sarma, Non-Abelian Anyons and Topological Quantum Computation, Rev. Mod. Phys. 80 1083 (2008) (arXiv:0707.1888)
Steven H. Simon, Topological Quantum, Oxford University Press (2023) [ISBN:9780198886723, pdf, webpage]
On topological quantum compilation and approximating (cf. the Solovay-Kitaev theorem) given quantum gates by (i.e. compiling them to) ciOcuits of anyon braid gates (generally considered for su(2)-anyons and here mostly for universal Fibonacci anyons, to some extent also for non-universal Majorana anyons):
Nicholas E. Bonesteel, Layla Hormozi, Georgios Zikos, Steven H. Simon, Braid Topologies for Quantum Computation, Phys. Rev. Lett. 95 140503 (2005) arXiv:quant-ph/0505065, doi:10.1103/PhysRevLett.95.140503
Layla Hormozi, Georgios Zikos, Nicholas E. Bonesteel, Steven H. Simon, Topological Quantum Compiling, Phys. Rev. B 75 165310 (2007) arXiv:quant-ph/0610111, doi:10.1103/PhysRevB.75.165310
Layla Hormozi, Nicholas E. Bonesteel, Steven H. Simon, Topological Quantum Computing with Read-Rezayi States, Phys. Rev. Lett. 103 160501 (2009) doi:10.1103/PhysRevLett.103.160501, arXiv:0903.2239
M. Baraban, Nicholas E. Bonesteel, Steven H. Simon, Resources required for topological quantum factoring, Phys. Rev. A 81 062317 (2010) [doi:10.1103/PhysRevA.81.062317, arXiv:1002.0537]
(focus on compiling Shor's algorithm)
and particularly by just the “weaves” among all braids:
On “Gaffnian states” for quantum Hall systems:
On fractional quantum Hall systems and description of its Laughlin wavefunctions as conformal blocks of 2d CFT:
On Laughlin wavefunctions and its cousins, approximating ground states of fractional quantum Hall systems:
On topological phases of matter via higher lattice gauge theory:
Last revised on May 26, 2025 at 15:10:07. See the history of this page for a list of all contributions to it.