nLab Yang-Mills monopoles as rational maps -- references

Identification of Yang-Mills monopoles with rational maps

Identification of Yang-Mills monopoles with rational maps

The following lists references concerned with the identification of the (extended) moduli space of Yang-Mills monopoles (in the BPS limit, i.e. for vanishing Higgs potential) with a mapping space of complex rational maps from the complex plane, equivalently holomorphic maps from the Riemann sphere P 1\mathbb{C}P^1 (at infinity in 3\mathbb{R}^3) to itself (for gauge group SU(2)) or generally to a complex flag variety such as (see Ionnadou & Sutcliffe 1999a for review) to a coset space by the maximal torus (for maximal symmetry breaking) or to complex projective space P n1\mathbb{C}P^{n-1} (for gauge group SU(n) and minimal symmetry breaking).

The identification was conjectured (following an analogous result for Yang-Mills instantons) in:

Full understanding of the rational map involved as “scattering data” of the monopole is due to:

The identification with (pointed) holomorphic functions out of P 1 \mathbb{C}P^1 was proven…

…for the case of gauge group SU ( 2 ) SU(2) (maps to P 1 \mathbb{C}P^1 itself) in

…for the more general case of classical gauge group with maximal symmetry breaking (maps to the coset space by the maximal torus) in:

… for the fully general case of semisimple gauge groups with any symmetry breaking (maps to any flag varieties) in

and for un-pointed maps in

Further discussion:

Review:

  • Alexander B. Atanasov, Magnetic monopoles and the equations of Bogomolny and Nahm (pdf), chapter 5 in: Magnetic Monopoles, ‘t Hooft Lines, and the Geometric Langlands Correspondence, 2018 (pdf, slides)

On the relevant homotopy of rational maps (see there for more references):

Last revised on October 30, 2023 at 06:13:24. See the history of this page for a list of all contributions to it.