nLab
adjunction between topological spaces and diffeological spaces

Proposition

(adjunction between topological spaces and diffeological spaces)

There is a pair of adjoint functors

TopologicalSpacesAAAACdfflgDtplgDiffeologicalSpaces TopologicalSpaces \underoverset{ \underset{ Cdfflg }{\longrightarrow} }{ \overset{ Dtplg }{\longleftarrow} }{\phantom{AA}\bot\phantom{AA}} DiffeologicalSpaces

between the categories of TopologicalSpaces and of DiffeologicalSpaces, where

Moreover:

  1. the fixed points of this adjunction XX \inTopologicalSpaces (those for which the counit is an isomorphism, hence here: a homeomorphism) are precisely the Delta-generated topological spaces (i.e. D-topological spaces):

    XisΔ-generatedDtplg(Cdffg(X))ϵ XX X \;\,\text{is}\;\Delta\text{-generated} \;\;\;\;\; \Leftrightarrow \;\;\;\;\; Dtplg(Cdffg(X)) \underoverset{\simeq}{\;\;\epsilon_X\;\;}{\longrightarrow} X
  2. this is an idempotent adjunction, which exhibits Δ\Delta-generated/D-topological spaces as a reflective subcategory inside diffeological spaces and a coreflective subcategory inside all topological spaces:

(1)TopologicalSpacesAAAACdfflgDTopologicalSpacesAAAADtplgDiffeologicalSpaces TopologicalSpaces \underoverset { \underset{ Cdfflg }{\longrightarrow} } { \overset{ }{\hookleftarrow} } {\phantom{AA}\bot\phantom{AA}} DTopologicalSpaces \underoverset { \underset{ }{\hookrightarrow} } { \overset{ Dtplg }{\longleftarrow} } {\phantom{AA}\bot\phantom{AA}} DiffeologicalSpaces

Finally, these adjunctions are a sequence of Quillen equivalences with respect to the:

classical model structure on topological spacesmodel structure on D-topological spacesmodel structure on diffeological spaces

Caution: There was a gap in the original proof that DTopologicalSpaces QuillenDiffeologicalSpacesDTopologicalSpaces \simeq_{Quillen} DiffeologicalSpaces. The gap is claimed to be filled now, see the commented references here.

These adjunctions and their properties are observed in Shimakawa-Yoshida-Haraguchi 10, Prop. 3.1, Prop. 3.2, Lemma 3.3. The model structures and Quillen equivalences are due to Haraguchi 13, Thm. 3.3 (on the left) and Haraguchi-Shimakawa 13, Sec. 7 (on the right, but this may have a gap).

Proof

We spell out the existence of the idempotent adjunction (1):

First, to see we have an adjunction DtplgCdfflgDtplg \dashv Cdfflg, we check the hom-isomorphism (here).

Let XDiffeologicalSpacesX \in DiffeologicalSpaces and YTopologicalSpacesY \in TopologicalSpaces. Write () s(-)_s for the underlying sets. Then a morphism, hence a continuous function of the form

f:Dtplg(X)Y, f \;\colon\; Dtplg(X) \longrightarrow Y \,,

is a function f s:X sY sf_s \colon X_s \to Y_s of the underlying sets such that for every open subset AY sA \subset Y_s and every smooth function of the form ϕ: nX\phi \colon \mathbb{R}^n \to X the preimage (f sϕ s) 1(A) n(f_s \circ \phi_s)^{-1}(A) \subset \mathbb{R}^n is open. But this means equivalently that for every such ϕ\phi, fϕf \circ \phi is continuous. This, in turn, means equivalently that the same underlying function f sf_s constitutes a smooth function f˜:XCdfflg(Y)\widetilde f \;\colon\; X \longrightarrow Cdfflg(Y).

In summary, we thus have a bijection of hom-sets

Hom(Dtplg(X),Y) Hom(X,Cdfflg(Y)) f s (f˜) s=f s \array{ Hom( Dtplg(X), Y ) &\simeq& Hom(X, Cdfflg(Y)) \\ f_s &\mapsto& (\widetilde f)_s = f_s }

given simply as the identity on the underlying functions of underlying sets. This makes it immediate that this hom-isomorphism is natural in XX and YY and this establishes the adjunction.

Next, to see that the D-topological spaces are the fixed points of this adjunction, we apply the above natural bijection on hom-sets to the case

Hom(Dtplg(Cdfflg(Z)),Y) Hom(Cdfflg(Z),Cdfflg(Y)) (ϵ Z) s (id) s \array{ Hom( Dtplg(Cdfflg(Z)), Y ) &\simeq& Hom(Cdfflg(Z), Cdfflg(Y)) \\ (\epsilon_Z)_s &\mapsto& (\mathrm{id})_s }

to find that the counit of the adjunction

Dtplg(Cdfflg(X))ϵ XX Dtplg(Cdfflg(X)) \overset{\epsilon_X}{\longrightarrow} X

is given by the identity function on the underlying sets (ϵ X) s=id (X s)(\epsilon_X)_s = id_{(X_s)}.

Therefore η X\eta_X is an isomorphism, namely a homeomorphism, precisely if the open subsets of X sX_s with respect to the topology on XX are precisely those with respect to the topology on Dtplg(Cdfflg(X))Dtplg(Cdfflg(X)), which means equivalently that the open subsets of XX coincide with those whose pre-images under all continuous functions ϕ: nX\phi \colon \mathbb{R}^n \to X are open. This means equivalently that XX is a D-topological space.

Finally, to see that we have an idempotent adjunction, we check that the comonad

DtplgCdfflg:TopologicalSpacesTopologicalSpaces Dtplg \circ Cdfflg \;\colon\; TopologicalSpaces \to TopologicalSpaces

is an idempotent comonad, hence that

DtplgCdfflgDtplgηCdfflgDtplgCdfflgDtplgCdfflg Dtplg \circ Cdfflg \overset{ Dtplg \cdot \eta \cdot Cdfflg }{\longrightarrow} Dtplg \circ Cdfflg \circ Dtplg \circ Cdfflg

is a natural isomorphism. But, as before for the adjunction counit ϵ\epsilon, we have that also the adjunction unit η\eta is the identity function on the underlying sets. Therefore, this being a natural isomorphism is equivalent to the operation of passing to the D-topological refinement of the topology of a topological space being an idempotent operation, which is clearly the case.

Last revised on November 26, 2020 at 06:32:20. See the history of this page for a list of all contributions to it.