nLab
applications of double category theory
A list of works and resources about applications of double category theory.
See there for introductory material.
Theory
- David Jaz Myers, String diagrams for double categories and (virtual) equipments, (arXiv), 2016
- Mike Shulman, Equipments, (n-Cafè), 2009
- Mike Shulman, Framed bicategories and monoidal fibrations, (arXiv), 2009
- Max New, Dan Licata, A Formal Logic for Formal Category Theory, (arXiv), 2022
Grothendieck constructions
- Evan Patterson, Grothendieck construction for double categories, (Topos Institute), 2022
- Cruttwell, Lambert, Pronk, Szyld, Double Fibrations, (arXiv), 2022
Applications
Lenses & optics
- Bryce Clarke, The double category of lenses, (online), 2022
- Capucci, Seeing double through dependent optics, (arXiv), 2022
- Guillaume Boisseau, Chad Nester, Mario Roman, Cornering optics,(arXiv), 2022
Open systems theory
- Jared Culbertson, Paul Gustafson, Daniel E. Koditschek, Peter F. Stiller, Formal composition of hybrid systems, (arXiv)
- Kenny Courser, Open systems: a double categorical perspective, (arXiv), 2020 See also structured cospans and decorated cospans
- Chad Nester, Situated Transition Systems, (arXiv), 2021
- David Jaz Myers, Categorical systems theory, (online), 2021
- Evan Patterson, Decorated cospans via the double Grothendieck construction, (arXiv), 2022
- John Baez, Kenny Courser, Christina Vasilakopoulou, Structured versus Decorated Cospans, (Compositionality), 2022
- Chad Nester, Concurrent Process Histories and Resource Transducers, (arXiv), 2022
Theory of programming languagues
- Pierre-Evariste Dagand, Conor McBride, A Categorical Treatment of Ornaments, (acm), 2013
- Max New, Dan Licata, Call-by-name Gradual Type Theory, (arXiv), 2018
- Max New, Dan Licata, A Formal Logic for Formal Category Theory, (arXiv), 2022
Last revised on January 9, 2023 at 12:30:56.
See the history of this page for a list of all contributions to it.