nLab dependent choice

Redirected from "axiom of dependent choice".
Dependent choice

Dependent choice

Statement

 In set theory

In set theory, the axiom of dependent choice (DC) states that if XX is a nonempty (inhabited) set and if RR is a total binary relation on XX, then there exists a sequence x:Xx\colon \mathbb{N} \to X such that (x n,x n+1)(x_n, x_{n+1}) belongs to RR for all nn \in \mathbb{N}. It is strictly weaker than the full axiom of choice, but strictly stronger than the axiom of countable choice. It is called dependent choice because the available choices for x n+1x_{n+1} depend on the choice of x nx_n made at the previous stage.

There is another way to express the axiom of dependent choice which uses surjections instead of entire relations:

The axiom of dependent choice states that given a family of sets X nX_n and a family of surjections f n:X n+1X nf_n:X_{n + 1} \to X_n indexed by natural numbers nn \in \mathbb{N}:

X 0f 0X 1f 1X 1f 2X_0 \overset{f_0}\leftarrow X_1 \overset{f_1}\leftarrow X_1 \overset{f_2}\leftarrow \ldots

the projection function to X 0X_0 from the sequential limit limX n\underset{\leftarrow}\lim X_n of the above diagram is a surjection.

In a topos or pretopos

More generally, given an elementary topos or a pretopos \mathcal{E} with sequential limits, the axiom of dependent choice states that given a sequence of objects X:Ob()X:\mathbb{N} \to \mathrm{Ob}(\mathcal{E}) and a dependent sequence of epimorphisms f n:hom (X n+1,X n)f_n:\mathrm{hom}_\mathcal{E}(X_{n + 1}, X_{n}) indexed by nn \in \mathbb{N}, the projection function to X 0X_0 from the sequential limit limX n\underset{\leftarrow}\lim X_n of the above diagram is an epimorphism.

 In dependent type theory

In dependent type theory, the axiom of dependent choice states that if AA is an inhabited set and if RR is a entire relation on AA, then then there exists a sequence a:Aa:\mathbb{N} \to A such that for all n:n:\mathbb{N}, R(a(n),a(n+1))R(a(n), a(n + 1)) holds.

ΓAtypeΓ,x:A,y:AR(x,y)typeΓDC A R:(isSet(A)×[A])( x:A( y:AisProp(R(x,y)))×y:A.R(x,y))a:A. n:R(a(n),a(n+1))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A, y:A \vdash R(x, y) \; \mathrm{type}}{\Gamma \vdash \mathrm{DC}_{A}^{R}:(\mathrm{isSet}(A) \times [A]) \to \left(\prod_{x:A} \left(\prod_{y:A} \mathrm{isProp}(R(x, y))\right) \times \exists y:A.R(x, y)\right) \to \exists a:\mathbb{N} \to A.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

If the dependent type theory has a type of all propositions Prop\mathrm{Prop}, this can be simplified down to the inference rule

ΓAtypeΓDC A:(isSet(A)×[A]) R:A×AProp( x:Ay:A.R(x,y))a:A. n:R(a(n),a(n+1))\frac{\Gamma \vdash A \; \mathrm{type}}{\Gamma \vdash \mathrm{DC}_{A}:(\mathrm{isSet}(A) \times [A]) \to \prod_{R:A \times A \to \mathrm{Prop}} \left(\prod_{x:A} \exists y:A.R(x, y)\right) \to \exists a:\mathbb{N} \to A.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

Applications

Typical applications of dependent choice include Kőnig's lemma? and the Baire category theorem for complete metric spaces.

Acceptability

For a number of schools of constructive mathematics, dependent choice is considered an acceptable alternative to full AC, and the principle holds (assuming that it holds in Set) in quite a few toposes of interest in which full AC doesn’t hold, including all presheaf toposes and the effective topos. In fact, it follows from the stronger presentation axiom, which holds in many of these toposes and also has a constructive justification.

Like countable choice, it fails for sheaves over the space of real numbers.

Variations

Dependent nn-choice and \infty-choice

In dependent type theory, the axiom of dependent choice requires that AA be a set. This can be generalised to the axiom of dependent nn-choice by replacing the set requirement with an nn-truncation requirement for AA: if AA is an inhabited nn-truncated type and if RR is a entire relation on AA, then then there exists a sequence a:Aa:\mathbb{N} \to A such that for all n:n:\mathbb{N}, R(a(n),a(n+1))R(a(n), a(n + 1)) holds.

ΓAtypeΓ,x:A,y:AR(x,y)typeΓDC n,A R:(isntype(A)×[A])( x:A( y:AisProp(R(x,y)))×y:A.R(x,y))a:A. n:R(a(n),a(n+1))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A, y:A \vdash R(x, y) \; \mathrm{type}}{\Gamma \vdash \mathrm{DC}_{n, A}^{R}:(\mathrm{is}n\mathrm{type}(A) \times [A]) \to \left(\prod_{x:A} \left(\prod_{y:A} \mathrm{isProp}(R(x, y))\right) \times \exists y:A.R(x, y)\right) \to \exists a:\mathbb{N} \to A.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

These are stronger axioms as nn increases.

In the limit as nn goes to infinity, this is called the axiom of dependent infinity-choice, where AA doesn’t have any truncation requirements: if AA is an inhabited type and if RR is a entire relation on AA, then then there exists a sequence a:Aa:\mathbb{N} \to A such that for all n:n:\mathbb{N}, R(a(n),a(n+1))R(a(n), a(n + 1)) holds.

ΓAtypeΓ,x:A,y:AR(x,y)typeΓDC ,A R:[A]( x:A( y:AisProp(R(x,y)))×y:A.R(x,y))a:A. n:R(a(n),a(n+1))\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma, x:A, y:A \vdash R(x, y) \; \mathrm{type}}{\Gamma \vdash \mathrm{DC}_{\infty, A}^{R}:[A] \to \left(\prod_{x:A} \left(\prod_{y:A} \mathrm{isProp}(R(x, y))\right) \times \exists y:A.R(x, y)\right) \to \exists a:\mathbb{N} \to A.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

Dependent choice for the natural numbers

Dependent choice for the natural numbers DC \mathrm{DC}_\mathbb{N} states that if RR is a entire relation on \mathbb{N}, then there exists a sequence xx in \mathbb{N} such that R(x n,x n+1)R(x_n, x_{n+1}) holds for all nn \in \mathbb{N}. DC \mathrm{DC}_\mathbb{N} is enough to prove that every Dedekind real number is a Cauchy real number (the converse is always true).

In dependent type theory this is given by the following inference rule:

Γ,x:,y:R(x,y)typeΓDC R:( x:( y:isProp(R(x,y)))×y:.R(x,y))a:. n:R(a(n),a(n+1))\frac{\Gamma, x:\mathbb{N}, y:\mathbb{N} \vdash R(x, y) \; \mathrm{type}}{\Gamma \vdash \mathrm{DC}_\mathbb{N}^{R}:\left(\prod_{x:\mathbb{N}} \left(\prod_{y:\mathbb{N}} \mathrm{isProp}(R(x, y))\right) \times \exists y:\mathbb{N}.R(x, y)\right) \to \exists a:\mathbb{N} \to \mathbb{N}.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

If the dependent type theory has a type of all propositions Prop\mathrm{Prop}, this can be simplified down to the axiom

ΓctxΓDC : R:×Prop( x:y:.R(x,y))a:. n:R(a(n),a(n+1))\frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathrm{DC}_\mathbb{N}:\prod_{R:\mathbb{N} \times \mathbb{N} \to \mathrm{Prop}} \left(\prod_{x:\mathbb{N}} \exists y:\mathbb{N}.R(x, y)\right) \to \exists a:\mathbb{N} \to \mathbb{N}.\prod_{n:\mathbb{N}} R(a(n), a(n + 1))}

References

Last revised on December 7, 2024 at 16:43:16. See the history of this page for a list of all contributions to it.