nLab derived category of coherent sheaves




The derived category of a category quasi-coherent sheaves.



  • A. I. Bondal, D. O. Orlov, Derived categories of coherent sheaves, Proc. Internat. Congress of Mathematicians vol. II 46–54 (Beijing, 2002)

    djvu:134K pdf:881K

  • V. A. Lunts, D. O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), 853-908, journal, arXiv:0908.4187, doi

  • Dmitri Orlov, Derived categories of coherent sheaves and motives.


  • Dmitri Orlov, Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 503–531, Progr. Math., 270, Birkhauser, Boston, Inc., Boston, MA, 2009 math.AG/0503632

  • A. N. Kapustin, D. O. Orlov, Lectures on mirror symmetry, derived categories, and D-branes (Russian) Uspekhi Mat. Nauk 59 (2004), no. 5 (359), 101–134; English translation in Russian Math. Surveys 59 (2004), no. 5, 907–940 math.AG/0308173

  • A. I. Bondal, D. O. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compos. Math. 125 (2001), 327–344 doi:10.1023/A:1002470302976

  • L.Katzarkov, M.Kontsevich, T.Pantev, Hodge theoretic aspects of mirror symmetry, arxiv:0806.0107

  • Valery Lunts, Olaf M. Schnuerer, New enhancements of derived categories of coherent sheaves and applications, arXiv.

Introduction and review:

In Rozansky-Witten theory

On Rozansky-Witten weight systems as Lie algebra weight systems for Lie algebra objects in the derived category of quasi-coherent sheaves, and unified Wheels theorem:


On t-structures on derived categories of coherent sheaves:

Last revised on April 7, 2023 at 18:02:13. See the history of this page for a list of all contributions to it.